"Incomplete Information System and Rough Set Theory: Models and Attribute Reductions" covers theoretical study of generalizations of rough set model in various incomplete information systems. It discusses not only the regular attributes but also the criteria in the incomplete information systems. Based on different types of rough set models, the book presents the practical approaches to compute several reducts in terms of these models. The book is intended for researchers and postgraduate students in machine learning, data mining and knowledge discovery, especially for those who are working in rough set theory, and granular computing.
Dr. Xibei Yang is a lecturer at the School of Computer Science and Engineering, Jiangsu University of Science and Technology, China; Jingyu Yang is a professor at the School of Computer Science, Nanjing University of Science and Technology, China.
Le informazioni nella sezione "Riassunto" possono far riferimento a edizioni diverse di questo titolo.
Part 1 Rough Sets in Complete Information System.- Indiscernibility Relation Based Rough Sets.- Dominance-based Rough Set Approach.- Part 2 Incomplete Information System with Unknown Values.- Generalized Binary Relations Based Rough sets.- Neighborhood Systems and Rough Sets.- Dominance-based Rough Set in incomplete system with “do not care” unknown values.- Dominance-based Rough Set in incomplete system with lost unknown values.- Rough Sets in Generalized Incomplete Information System.- Part 3 Set-valued And Interval-valued Information Systems.- Rough Sets And Dominance-based Rough Sets in Set-valued Information System.- Rough Sets And Dominance-based Rough Sets in Interval-valued Information System.
Book by Yang Xibei Yang Jingyu
Le informazioni nella sezione "Su questo libro" possono far riferimento a edizioni diverse di questo titolo.
Da: Lucky's Textbooks, Dallas, TX, U.S.A.
Condizione: New. Codice articolo ABLING22Oct2817100464441
Quantità: Più di 20 disponibili
Da: GreatBookPrices, Columbia, MD, U.S.A.
Condizione: New. Codice articolo 14331334-n
Quantità: 15 disponibili
Da: California Books, Miami, FL, U.S.A.
Condizione: New. Codice articolo I-9783642259340
Quantità: Più di 20 disponibili
Da: GreatBookPrices, Columbia, MD, U.S.A.
Condizione: As New. Unread book in perfect condition. Codice articolo 14331334
Quantità: 15 disponibili
Da: Ria Christie Collections, Uxbridge, Regno Unito
Condizione: New. In English. Codice articolo ria9783642259340_new
Quantità: Più di 20 disponibili
Da: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germania
Buch. Condizione: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -'Incomplete Information System and Rough Set Theory: Models and Attribute Reductions' covers theoretical study of generalizations of rough set model in various incomplete information systems. It discusses not only the regular attributes but also the criteria in the incomplete information systems. Based on different types of rough set models, the book presents the practical approaches to compute several reducts in terms of these models. The book is intended for researchers and postgraduate students in machine learning, data mining and knowledge discovery, especially for those who are working in rough set theory, and granular computing. Dr. Xibei Yang is a lecturer at the School of Computer Science and Engineering, Jiangsu University of Science and Technology, China; Jingyu Yang is a professor at the School of Computer Science, Nanjing University of Science and Technology, China. 232 pp. Englisch. Codice articolo 9783642259340
Quantità: 2 disponibili
Da: GreatBookPricesUK, Woodford Green, Regno Unito
Condizione: New. Codice articolo 14331334-n
Quantità: Più di 20 disponibili
Da: Books Puddle, New York, NY, U.S.A.
Condizione: New. pp. xiv + 232. Codice articolo 2658568195
Quantità: 4 disponibili
Da: GreatBookPricesUK, Woodford Green, Regno Unito
Condizione: As New. Unread book in perfect condition. Codice articolo 14331334
Quantità: Più di 20 disponibili
Da: Majestic Books, Hounslow, Regno Unito
Condizione: New. Print on Demand pp. xiv + 232. Codice articolo 50991580
Quantità: 4 disponibili