Modern statistics deals with large and complex data sets, and consequently with models containing a large number of parameters. This book presents a detailed account of recently developed approaches, including the Lasso and versions of it for various models, boosting methods, undirected graphical modeling, and procedures controlling false positive selections.
A special characteristic of the book is that it contains comprehensive mathematical theory on high-dimensional statistics combined with methodology, algorithms and illustrations with real data examples. This in-depth approach highlights the methods’ great potential and practical applicability in a variety of settings. As such, it is a valuable resource for researchers, graduate students and experts in statistics, applied mathematics and computer science.
Le informazioni nella sezione "Riassunto" possono far riferimento a edizioni diverse di questo titolo.
From the reviews:
“This book is a complete study of ℓ1-penalization based statistical methods for high-dimensional data ... . Definitely, this book is useful. ... its strong level in mathematics makes it more suitable to researchers and graduate students who already have a strong background in statistics. ... it gives the state-of-the-art of the theory, and therefore can be used for an advanced course on the topic. ... the last part of the book is an exciting introduction to new research perspectives provided by ℓ1-penalized methods.” (Pierre Alquier, Mathematical Reviews, Issue 2012 e)
“All Classical Statisticians interested in the very popular but a bit old methodologies like the Lasso (Tibshirani, 1996), its modifications like adaptive Lasso (Zou, 2006), and their theory, computational algorithms, applications to bioinformatics and other high dimensional applications. All such researchers would find this book worth buying. It is written by two outstanding theoreticians with flair for clear writing and excellent applications. ... theory depends a lot on new concentration inequalities coming from the French probabilists. The book has good collection of these, with proofs.” (Jayanta K. Ghosh, International Statistical Review, Vol. 80 (3), 2012)
Peter Bühlmann is Professor of Statistics at ETH Zürich. His main research areas are high-dimensional statistical inference, machine learning, graphical modeling, nonparametric methods, and statistical modeling in the life sciences. He is currently editor of the Annals of Statistics. He was awarded a Medallion lecture by the Institute of Mathematical Statistics in 2009 and read a paper to the Royal Statistical Society in 2010.
Sara van de Geer has been a full professor at the ETH in Zürich since 2005. Her main areas of research are empirical process theory, statistical learning theory, and nonparametric and high-dimensional statistics. She is an associate editor of Probability Theory and Related Fields, The Scandinavian Journal of Statistics and Statistical Surveys and a member of the Swiss National Science Foundation and correspondent of the Dutch Royal Academy of Sciences.
She received the IMS medal in 2003 and the ISI award in 2005, and was an invited speaker at the International Conference of Mathematicians in 2010.
Le informazioni nella sezione "Su questo libro" possono far riferimento a edizioni diverse di questo titolo.
EUR 32,30 per la spedizione da Germania a U.S.A.
Destinazione, tempi e costiEUR 4,42 per la spedizione in U.S.A.
Destinazione, tempi e costiDa: Aideo Books, San Marino, CA, U.S.A.
Trade paperback. Condizione: New in new dust jacket. First edition. INTERNATIONAL EDITION. ***INTERNATIONAL EDITION*** Read carefully before purchase: This book is the international edition in mint condition with the different ISBN and book cover design, the major content is printed in full English as same as the original North American edition. The book printed in black and white, generally send in twenty-four hours after the order confirmed. All shipments contain tracking numbers. Great professional textbook selling experience and expedite shipping service. Trade paperback (US). Glued binding. 558 p. Contains: Illustrations, color. Springer Series in Statistics. Audience: General/trade. Codice articolo K709A0001333
Quantità: Più di 20 disponibili
Da: Sizzler Texts, SAN GABRIEL, CA, U.S.A.
Soft cover. Condizione: New. Condizione sovraccoperta: New. International Edition. **INTERNATIONAL EDITION** Read carefully before purchase: This book is the international edition in mint condition with the different ISBN and book cover design, the major content is printed in full English as same as the original North American edition. The book printed in black and white, generally send in twenty-four hours after the order confirmed. All shipments go through via USPS/UPS/DHL with tracking numbers. Great professional textbook selling experience and expedite shipping service. Codice articolo ABE-1533323139744
Quantità: Più di 20 disponibili
Da: Chiron Media, Wallingford, Regno Unito
PF. Condizione: New. Codice articolo 6666-IUK-9783642268571
Quantità: 10 disponibili
Da: Lucky's Textbooks, Dallas, TX, U.S.A.
Condizione: New. Codice articolo ABLIING23Mar3113020222729
Quantità: Più di 20 disponibili
Da: Ria Christie Collections, Uxbridge, Regno Unito
Condizione: New. In. Codice articolo ria9783642268571_new
Quantità: Più di 20 disponibili
Da: California Books, Miami, FL, U.S.A.
Condizione: New. Codice articolo I-9783642268571
Quantità: Più di 20 disponibili
Da: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germania
Taschenbuch. Condizione: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Modern statistics deals with large and complex data sets, and consequently with models containing a large number of parameters. This book presents a detailed account of recently developed approaches, including the Lasso and versions of it for various models, boosting methods, undirected graphical modeling, and procedures controlling false positive selections.A special characteristic of the book is that it contains comprehensive mathematical theory on high-dimensional statistics combined with methodology, algorithms and illustrations with real data examples. This in-depth approach highlights the methods' great potential and practical applicability in a variety of settings. As such, it is a valuable resource for researchers, graduate students and experts in statistics, applied mathematics and computer science. 576 pp. Englisch. Codice articolo 9783642268571
Quantità: 2 disponibili
Da: moluna, Greven, Germania
Condizione: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Contains the fundamentals of the recent research in a very timely areaGives an overview of the area and adds many new insightsThere is a unique mix of methodology, theory, algorithms and applicationsThe number of recent papers on the. Codice articolo 5054901
Quantità: Più di 20 disponibili
Da: AHA-BUCH GmbH, Einbeck, Germania
Taschenbuch. Condizione: Neu. Druck auf Anfrage Neuware - Printed after ordering - Modern statistics deals with large and complex data sets, and consequently with models containing a large number of parameters. This book presents a detailed account of recently developed approaches, including the Lasso and versions of it for various models, boosting methods, undirected graphical modeling, and procedures controlling false positive selections.A special characteristic of the book is that it contains comprehensive mathematical theory on high-dimensional statistics combined with methodology, algorithms and illustrations with real data examples. This in-depth approach highlights the methods' great potential and practical applicability in a variety of settings. As such, it is a valuable resource for researchers, graduate students and experts in statistics, applied mathematics and computer science. Codice articolo 9783642268571
Quantità: 1 disponibili
Da: AHA-BUCH GmbH, Einbeck, Germania
Taschenbuch. Condizione: Sehr gut. Gebraucht - Sehr gut SG - Ungelesenes Mängelexemplar, gestempelt, mit leichten Lagerspuren - Modern statistics deals with large and complex data sets, and consequently with models containing a large number of parameters. This book presents a detailed account of recently developed approaches, including the Lasso and versions of it for various models, boosting methods, undirected graphical modeling, and procedures controlling false positive selections. A special characteristic of the book is that it contains comprehensive mathematical theory on high-dimensional statistics combined with methodology, algorithms and illustrations with real data examples. This in-depth approach highlights the methods' great potential and practical applicability in a variety of settings. As such, it is a valuable resource for researchers, graduate students and experts in statistics, applied mathematics and computer science. Codice articolo INF1000548145
Quantità: 1 disponibili