Articoli correlati a Quantum Relativity: A Synthesis of the Ideas of Einstein...

Quantum Relativity: A Synthesis of the Ideas of Einstein and Heisenberg - Brossura

 
9783642646126: Quantum Relativity: A Synthesis of the Ideas of Einstein and Heisenberg
Vedi tutte le copie di questo ISBN:
 
 
Over the past years the author has developed a quantum language going beyond the concepts used by Bohr and Heisenberg. The simple formal algebraic language is designed to be consistent with quantum theory. It differs from natural languages in its epistemology, modal structure, logical connections, and copulatives. Starting from ideas of John von Neumann and in part also as a response to his fundamental work, the author bases his approach on what one really observes when studying quantum processes. This way the new language can be seen as a clue to a deeper understanding of the concepts of quantum physics, at the same time avoiding those paradoxes which arise when using natural languages. The work is organized didactically: The reader learns in fairly concrete form about the language and its structure as well as about its use for physics.

Le informazioni nella sezione "Riassunto" possono far riferimento a edizioni diverse di questo titolo.

Contenuti:
Act 1 One.- 1. Quantum Action.- 1.1 The Quantum Evolution.- 1.2 Quantum Concepts.- 1.2.1 Initial and Final Modes.- 1.2.2 Quantum Relativity.- 1.2.3 Time.- 1.2.4 Being, Becoming and Doing.- 1.2.5 Ontism and Praxism.- 1.3 Quantum Entities.- 1.3.1 Sharp Actions.- 1.3.2 Complete Actions.- 1.3.3 Quantum Acts.- 1.3.4 Quantum Activity.- 1.3.5 Quantum Superposition.- 1.4 The Quantum Project.- 1.4.1 Understanding Quantum Theory.- 1.4.2 The Quantum-Relativity Analogy.- 1.5 Quantum Nomenclature.- 1.6 Summary.- 2. Elementary Quantum Experiments.- 2.1 Malusian Experiments.- 2.2 Adjoint.- 2.3 Action Vector Semantics.- 2.3.1 General Actions.- 2.3.2 Action Vectors of Classical Systems.- 2.3.3 Equivalent Actions.- 2.3.4 Semantics and Ensembles.- 2.3.5 Logic, Kinematics, and Dynamics.- 2.3.6 Complex Vectors.- 2.3.7 Adjoint and Time Reversals.- 2.4 Quantum and Classical Kinematics.- 2.4.1 Classical Kinematics.- 2.4.2 Bohr Quantum Principle.- 2.4.3 Quantum Kinematics.- 2.4.4 Logical Modes.- 2.4.5 Causes.- 2.4.6 Completeness.- 2.4.7 Connectedness.- 2.5 Quantum and Classical Relativities.- 2.6 Sums Over Paths.- 2.7 Discrete Quantum Theory.- 2.8 Summary.- 3. Classical Matrix Mechanics.- 3.1 Operations and Cooperations.- 3.1.1 Classical Operators.- 3.1.2 Classical Cooperations and Coarrows.- 3.1.3 Linearization.- 3.1.4 Vacuum.- 3.2 Ordinates and Coordinates.- 3.2.1 Classical Eigenvalue Principle.- 3.2.2 Spectral Analysis.- 3.2.3 Complete Coordinates.- 3.2.4 OR, XOR, and POR.- 3.2.5 Averages.- 3.2.6 Framed Algebras.- 3.3 Some Classical Systems.- 3.3.1 Bit.- 3.3.2 N-ring.- 3.3.3 Bin and Commuting Calculus.- 3.3.4 Bits and Anticommuting Calculus.- 3.3.5 Top Bin.- 3.3.6 Extended Bin.- 3.4 Summary.- 3.5 References.- 4. Quantum Jumps.- 4.1 Quantum Arrows and Coarrows.- 4.1.1 Quantum Operations.- 4.1.2 Quantum Systems Are Not Categories.- 4.2 Adjoints and Metrics.- 4.2.1 Quantum Types.- 4.2.2 Negative Norms.- 4.2.3 Projections.- 4.2.4 Quantum Coordinates.- 4.2.5 Interpretations of Coordinates.- 4.2.6 Projective Coordinates.- 4.2.7 Non-numerical Coordinates.- 4.3 Transformation Theory.- 4.3.1 Frames.- 4.3.2 Operator Kinematics, Quantum and Classical.- 4.3.3 Quantum Entity.- 4.4 Quantizing.- 4.4.1 Re-relativizing.- 4.4.2 Rephasing.- 4.4.3 Quantization and Non-Commutativity.- 4.5 Born-Malus Law.- 4.6 Quantum Logic.- 4.6.1 Quantum Binary Variables.- 4.6.2 Quantum OR, POR, and XOR.- 4.6.3 Quantum Cooperations.- 4.7 Indefinite Quantum Kinematics.- 4.8 Simple Quantum Systems.- 4.8.1 Bit.- 4.8.2 Bin.- 4.8.3 Projective Quantum Bin.- 4.8.4 Indeterminacy Principle.- 4.8.5 Hydrogen Atom.- 4.8.6 Photon and Ghost.- 4.9 Summary.- 5. Non-Objective Physics.- 5.1 Descartes’ Mathesis.- 5.2 Newton’s Aether.- 5.2.1 Partial Reflection and Interference.- 5.2.2 Polarization.- 5.2.3 Diffraction.- 5.2.4 Quantum Principle.- 5.3 Planck’s Constants.- 5.3.1 k is for Thermodynamics.- 5.3.2 c is for Special Relativity.- 5.3.3 G is for Gravity.- 5.3.4 h is for Quantum Theory.- 5.3.5 Planck Units.- 5.4 Einstein’s Quantum.- 5.4.1 Photoelectric Effect.- 5.4.2 Unified Fields.- 5.4.3 How Did Newton Know?.- 5.5 Bohr’s Atom.- 5.5.1 Correspondence Principle.- 5.6 Post-quantum Theories.- 5.6.1 Theory S.- 5.6.2 Theory N.- 5.6.3 Theory O.- 5.6.4 Theory E.- 5.6.5 Why So Many Theories?.- 6. Why Vectors?.- 6.1 Fundamental Theorem (Weak Form).- 6.2 Galois Lattices and Galois Connection.- 6.3 Multiplicity.- 6.4 Logic-based Arithmetic.- 6.4.1 Quantum-Logical Addition.- 6.4.2 Quantum-Logical Multiplication.- 6.5 Fundamental Theorem (Strong Form).- 6.5.1 Occlusion.- 6.5.2 Identification.- 6.5.3 Adjoint.- 6.5.4 Modularity.- 6.5.5 Irreducibility.- 6.5.6 Desarguesian Postulate.- 6.5.7 Proofs.- 6.6 Generators.- 6.7 Critique of the Lattice Logic.- 6.8 Summary.- Act 2 Many.- 7. Many Quanta.- 7.1 Classical Combinatorics.- 7.1.1 Ordered Pairs of Units.- 7.1.2 Unordered Pairs of Units.- 7.1.3 Symmetry and Duality.- 7.1.4 Sequence.- 7.1.5 Series.- 7.1.6 Sib.- 7.1.7 Set.- 7.2 Quantum Combinatorics.- 7.2.1 Quantum Sequence.- 7.2.2 Quantum Series.- 7.2.3 Quantum Sib.- 7.2.4 Quantum Set.- 7.3 Singleton.- 7.4 Why Tensors?.- 7.5 Summary.- 8. Quantum Probability and Improbability.- 8.1 Quantum Law of Large Numbers.- 8.1.1 Weak Law of Large Numbers.- 8.1.2 Strong Law of Large Numbers.- 8.2 Mixed Operations.- 8.2.1 Superpositions and Mixtures.- 8.2.2 Diffuse Initial Actions.- 8.2.3 Diffuse Final Actions.- 8.2.4 Diffuse Medial Actions.- 8.2.5 Coherent Cooperators.- 8.3 Classical Limit.- 8.3.1 Coherent States.- 8.3.2 Macroscopic Measurement.- 8.3.3 Equatorial Bulge.- 8.3.4 Coherent Plane.- 8.3.5 The ?qcs Process.- 8.4 Hidden States.- 9. The Search for Pangloss.- 9.1 Aristotle.- 9.2 Llull and Bruno.- 9.3 Leibniz.- 9.4 Grassmann.- 9.4.1 Extensors.- 9.4.2 Extensor Terminology.- 9.5 Boole.- 9.6 Peirce.- 9.6.1 Tychistic Logical Algebra.- 9.6.2 Synechism and Quantum Condensation.- 9.6.3 Nomic Evolution.- 9.7 Peano.- 9.8 Clifford.- 9.9 Summary.- 10. Quantum Set Algebra.- 10.1 Remarks on Set Algebra.- 10.2 Tensor Algebra of Sets.- 10.2.1 Opposite.- 10.2.2 Degree.- 10.2.3 Extensor Structure.- 10.2.4 Bases.- 10.2.5 Products.- 10.2.6 Complement.- 10.3 Recursive Construction.- 10.4 Infinite Sets.- 10.5 Classical, Mixed and Fully Quantum Set Algebras.- 10.6 Clifford Algebra.- 10.6.1 Classes as Clifford Extensors.- 10.6.2 Real Quantum Theory.- 10.6.3 Episystemic Variables.- 10.6.4 The Real World.- 10.7 Quantum Extensors.- 10.8 Summary.- Act 3 One.- 11. Classical Spacetime.- 11.1 Flat Spacetime.- 11.1.1 Chronometry.- 11.1.2 Causal Symmetry Implies Minkowski.- 11.1.3 Spinors and Minkowski.- 11.2 Causal Symmetries.- 11.2.1 Null Symmetric Metric.- 11.2.2 Poincaré.- 11.2.3 Lorentz.- 11.2.4 Infinitesimal Lorentz.- 11.3 Einstein Locality.- 11.3.1 Equivalence Principle.- 11.3.2 General Relativization.- 11.4 The Idea of Gauge.- 11.5 Tensor Differential Calculus.- 11.5.1 Covariant Derivative.- 11.5.2 Distortion.- 11.5.3 Curvature.- 11.5.4 Ricci Tensor.- 11.5.5 Torsion Tensor.- 11.6 Gravity.- 11.6.1 Special Relativistic Gravity.- 11.6.2 Einstein Gravity.- 11.7 Spin.- 11.7.1 Spinors and Polyspinors.- 11.7.2 Spin Algebra.- 11.7.3 Sesquispinors.- 11.7.4 Spin Adjoint.- 11.7.5 Spacetime Decomposition of Spin.- 11.7.6 Dirac Spinors.- 11.8 Spin Gauge.- 11.9 Summary.- 12. Semi-quantum Dynamics.- 12.1 Propagator.- 12.1.1 Forward Propagation.- 12.1.2 Classical Propagation.- 12.1.3 Quantum Propagation.- 12.1.4 Backward Propagation.- 12.1.5 The Measurement Problem.- 12.1.6 Generators.- 12.2 Classical Dynamics.- 12.2.1 Phase Space.- 12.2.2 Least Time Principle.- 12.2.3 Endpoint Variations.- 12.2.4 Variational Derivative.- 12.2.5 Stationary Phase.- 12.2.6 Action Principle.- 12.2.7 Hamiltonian Dynamics.- 12.3 Canonical Quantization.- 12.3.1 Quantum Energy.- 12.3.2 Coherent states.- 12.4 Quantum Dynamics.- 12.4.1 Real Time and Sample Time.- 12.4.2 Quantum Connection.- 12.4.3 Heisenberg Picture.- 12.4.4 Schrödinger Picture.- 12.4.5 Time-dependent Dynamics.- 12.5 Quantum Action Principle.- 12.5.1 Path Amplitude.- 12.5.2 Path Tensor.- 12.5.3 Hamiltonian and Lagrangian Theories.- 12.5.4 Schwinger Variational Principle.- 12.5.5 Superquantum Theory.- 12.5.6 What do Physicists Want?.- 12.6 Summary.- 13. Local Dynamics.- 13.1 Local Fields.- 13.2 Gauge Physics.- 13.2.1 Gauge History.- 13.2.2 Standard Model.- 13.2.3 Measuring the Gauge Connection.- 13.3 Odd Fields.- 13.4 Energy.- 13.5 Quantum Locality.- 14. Quantum Set Calculus.- 14.1 Why Set Calculus?.- 14.1.1 Interpretations of Set Theory.- 14.1.2 Activated Set Theory.- 14.1.3 Classical Pure Sets.- 14.2 Random Sets.- 14.2.1 First-Order Random Sets.- 14.2.2 Grassmann Algebra of the Random Set.- 14.3 The Quantum Set.- 14.3.1 Higher-Order Quantum Set.- 14.3.2 Operators of the Quantum Set.- 14.3.3 Does Unitizing Respect Degree?.- 14.3.4 Tensor Set Theory.- 14.3.5 Order.- 14.3.6 Metastatistics.- 14.3.7 Quantum Lambda Calculus.- 14.4 Act Algebra.- 14.5 Quantum Mapping.- 14.6 Summary.- 15. Quantum Groups and Operons.- 15.1 Motivations.- 15.2 Double Operations.- 15.2.1 Algebraic Preliminaries.- 15.2.2 Classical Double Arrows.- 15.2.3 Classical Double Semigroup and Algebra.- 15.3 The Operon Concept.- 15.4 Quantum Operon.- 15.5 Quantum Double Arrows.- 15.5.1 Unit and Inversor.- 15.6 Examples.- 15.6.1 Quantum Plane.- 15.6.2 Quantum Four-group.- 15.6.3 Operation Semigroup.- 15.6.4 Operon Diagrams.- 15.6.5 Pair Monoids.- 15.6.6 Projective Quantum Groups.- 15.7 Coherent Group of a Quantum Monoid.- 15.8 Summary.- Act 4 Nothing.- 16. Quantum Spacetime Net.- 16.1 Quantum Topology.- 16.2 Quantum Spacetime Past.- 16.2.1 Hyperspace.- 16.2.2 Infraspace.- 16.2.3 Microstructure.- 16.3 Quantum Spacetime Present.- 16.3.1 Causal Spacetime Network.- 16.3.2 Causal Relation and Successor Relation.- 16.3.3 Hyperalgebra.- 16.3.4 Simplicial Complex Theory.- 16.3.5 Membership Theory.- 16.3.6 Vertex Theory.- 16.3.7 Graph Theory.- 16.3.8 Inclusion Theory.- 16.3.9 Choosing a Spacetime Theory.- 16.4 Quantum Spacetime Nets.- 16.4.1 Correspondence.- 16.4.2 Net Diagrams.- 16.4.3 Quantizing Discrete Spacetimes.- 16.4.4 Net Notation.- 16.4.5 The Supercrystalline Vacuum.- 16.5 Spin.- 16.5.1 Discrete Spin.- 16.5.2 Quantum Spin.- 16.5.3 Indefinite Spin Metric.- 16.5.4 Coherent Spin.- 16.6 Flat Spacetime.- 16.6.1 Discrete Poincaré Group.- 16.6.2 Minkowski Spacetime.- 16.6.3 Quantum Poincaré Group.- 16.6.4 Coherent Translation Group.- 16.7 Internal Groups.- 16.7.1 QND Gauge Symmetries.- 16.7.2 Commutation Relations of the Standard Model.- 16.8 Quantum Network Dynamics.- 16.8.1 Network Charges and Fluxes.- 16.8.2 The Unitary Groups.- 16.8.3 QND Action Principle.- 16.9 Summary.- 17. Toolshed.- 17.1 Recursive Constructions.- 17.1.1 Logic and Sets.- 17.1.2 Acts.- 17.2 Algebra.- 17.2.1 Semigroup and Group.- 17.2.2 Category.- 17.2.2.1 Graph.- 17.2.2.2 Complex.- 17.2.2.3 Diagram.- 17.2.3 Group.- 17.2.4 Ring, Algebra, Module, Vector Space.- 17.2.5 Group Representation.- 17.2.6 Involutions.- 17.2.7 Lie Algebra.- 17.2.8 Tensor.- 17.2.9 Manifold.- 17.2.9.1 Tensor Calculus.- 17.2.9.2 Gauge.- 17.3 Order Concepts.- 17.3.1 Projective Geometry.- 17.3.2 Order Structures.- 17.3.3 Relation.- 17.4 Topology.- 17.5 Perturbation Methods.- 17.5.1 Discrete Perturbation Theory.- 17.5.2 Double Operators.- 17.5.3 Perturbation Series.- 17.5.4 Continuous Perturbation Theory.- 17.6 Hilbert Space and † Space.- 17.7 Notation.- 17.7.1 Indices.- 17.7.2 Mathematical Symbols and Abbreviations.
Dalla quarta di copertina:
The author presents a simple algebraic quantum language sharpening and deepening that of Bohr, Heisenberg, and von Neumann, with its own epistemology, modal structure, and connectives. The core of the language is semigroup of physical actions. The work extends quantum algebra from first-order to high-order propositions, classes, and actions; from positive to indefinite metrics; and from quantum systems to quantum sets, quantum semigroups, and quantum groups. The reader learns the theory by applying it to simple quantum problems at gradually higher levels. The author applies the extended quantum theory to a spacetime structure, which was taken as a fixed part of the classical framework of the original quantum theory. This leads to a simple proposal connecting the internal variables of spin, color, and isospin with the fine structure of spacetime.

Le informazioni nella sezione "Su questo libro" possono far riferimento a edizioni diverse di questo titolo.

  • EditoreSpringer-Verlag
  • Data di pubblicazione1990
  • ISBN 10 3642646123
  • ISBN 13 9783642646126
  • RilegaturaCopertina flessibile
  • Numero di pagine604
  • Valutazione libreria

Spese di spedizione: EUR 11,66
Da: Regno Unito a: U.S.A.

Destinazione, tempi e costi

Aggiungere al carrello

Altre edizioni note dello stesso titolo

9783540570844: Quantum Relativity: A Synthesis of the Ideas of Einstein and Heisenberg

Edizione in evidenza

ISBN 10:  3540570845 ISBN 13:  9783540570844
Casa editrice: Springer-Verlag Berlin and Heide..., 1996
Rilegato

  • 9780387570846: Quantum Relativity: A Synthesis of the Ideas of Einstein and Heisenberg

    Spring..., 1996
    Rilegato

  • 9783662600801: QUANTUM RELATIVITY

    Brossura

  • 9783642609374: Quantum Relativity: A Synthesis of the Ideas of Einstein and Heisenberg

    Springer, 2011
    Brossura

I migliori risultati di ricerca su AbeBooks

Foto dell'editore

David R. Finkelstein
Editore: Springer (2012)
ISBN 10: 3642646123 ISBN 13: 9783642646126
Nuovo Brossura Quantità: > 20
Print on Demand
Da:
Ria Christie Collections
(Uxbridge, Regno Unito)
Valutazione libreria

Descrizione libro Condizione: New. PRINT ON DEMAND Book; New; Fast Shipping from the UK. No. book. Codice articolo ria9783642646126_lsuk

Informazioni sul venditore | Contatta il venditore

Compra nuovo
EUR 140,51
Convertire valuta

Aggiungere al carrello

Spese di spedizione: EUR 11,66
Da: Regno Unito a: U.S.A.
Destinazione, tempi e costi
Immagini fornite dal venditore

Finkelstein, David R.
Editore: Springer (2012)
ISBN 10: 3642646123 ISBN 13: 9783642646126
Nuovo Soft Cover Quantità: 10
Da:
booksXpress
(Bayonne, NJ, U.S.A.)
Valutazione libreria

Descrizione libro Soft Cover. Condizione: new. Codice articolo 9783642646126

Informazioni sul venditore | Contatta il venditore

Compra nuovo
EUR 153,26
Convertire valuta

Aggiungere al carrello

Spese di spedizione: GRATIS
In U.S.A.
Destinazione, tempi e costi
Immagini fornite dal venditore

David R. Finkelstein
ISBN 10: 3642646123 ISBN 13: 9783642646126
Nuovo Taschenbuch Quantità: 2
Print on Demand
Da:
BuchWeltWeit Ludwig Meier e.K.
(Bergisch Gladbach, Germania)
Valutazione libreria

Descrizione libro Taschenbuch. Condizione: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Over the past years the author has developed a quantum language going beyond the concepts used by Bohr and Heisenberg. The simple formal algebraic language is designed to be consistent with quantum theory. It differs from natural languages in its epistemology, modal structure, logical connections, and copulatives. Starting from ideas of John von Neumann and in part also as a response to his fundamental work, the author bases his approach on what one really observes when studying quantum processes. This way the new language can be seen as a clue to a deeper understanding of the concepts of quantum physics, at the same time avoiding those paradoxes which arise when using natural languages. The work is organized didactically: The reader learns in fairly concrete form about the language and its structure as well as about its use for physics. The author presents a simple algebraic quantum language sharpening and deepening that of Bohr, Heisenberg, and von Neumann, with its own epistemology, modal structure, and connectives. The core of the language is semigroup of physical actions. The work extends quantum algebra from first-order to high-order propositions, classes, and actions; from positive to indefinite metrics; and from quantum systems to quantum sets, quantum semigroups, and quantum groups. The reader learns the theory by applying it to simple quantum problems at gradually higher levels. The author applies the extended quantum theory to a spacetime structure, which was taken as a fixed part of the classical framework of the original quantum theory. This leads to a simple proposal connecting the internal variables of spin, color, and isospin with the fine structure of spacetime. 604 pp. Englisch. Codice articolo 9783642646126

Informazioni sul venditore | Contatta il venditore

Compra nuovo
EUR 149,79
Convertire valuta

Aggiungere al carrello

Spese di spedizione: EUR 23,00
Da: Germania a: U.S.A.
Destinazione, tempi e costi
Immagini fornite dal venditore

David R. Finkelstein
ISBN 10: 3642646123 ISBN 13: 9783642646126
Nuovo Brossura Quantità: > 20
Print on Demand
Da:
moluna
(Greven, Germania)
Valutazione libreria

Descrizione libro Condizione: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Over the past years the author has developed a quantum language going beyond the concepts used by Bohr and Heisenberg. The simple formal algebraic language is designed to be consistent with quantum theory. It differs from natural languages in its epistemolo. Codice articolo 5066832

Informazioni sul venditore | Contatta il venditore

Compra nuovo
EUR 124,20
Convertire valuta

Aggiungere al carrello

Spese di spedizione: EUR 48,99
Da: Germania a: U.S.A.
Destinazione, tempi e costi
Immagini fornite dal venditore

David R. Finkelstein
ISBN 10: 3642646123 ISBN 13: 9783642646126
Nuovo Taschenbuch Quantità: 1
Da:
AHA-BUCH GmbH
(Einbeck, Germania)
Valutazione libreria

Descrizione libro Taschenbuch. Condizione: Neu. Druck auf Anfrage Neuware - Printed after ordering - Over the past years the author has developed a quantum language going beyond the concepts used by Bohr and Heisenberg. The simple formal algebraic language is designed to be consistent with quantum theory. It differs from natural languages in its epistemology, modal structure, logical connections, and copulatives. Starting from ideas of John von Neumann and in part also as a response to his fundamental work, the author bases his approach on what one really observes when studying quantum processes. This way the new language can be seen as a clue to a deeper understanding of the concepts of quantum physics, at the same time avoiding those paradoxes which arise when using natural languages. The work is organized didactically: The reader learns in fairly concrete form about the language and its structure as well as about its use for physics. The author presents a simple algebraic quantum language sharpening and deepening that of Bohr, Heisenberg, and von Neumann, with its own epistemology, modal structure, and connectives. The core of the language is semigroup of physical actions. The work extends quantum algebra from first-order to high-order propositions, classes, and actions; from positive to indefinite metrics; and from quantum systems to quantum sets, quantum semigroups, and quantum groups. The reader learns the theory by applying it to simple quantum problems at gradually higher levels. The author applies the extended quantum theory to a spacetime structure, which was taken as a fixed part of the classical framework of the original quantum theory. This leads to a simple proposal connecting the internal variables of spin, color, and isospin with the fine structure of spacetime. Codice articolo 9783642646126

Informazioni sul venditore | Contatta il venditore

Compra nuovo
EUR 151,59
Convertire valuta

Aggiungere al carrello

Spese di spedizione: EUR 32,99
Da: Germania a: U.S.A.
Destinazione, tempi e costi
Foto dell'editore

Finkelstein, David R. Ritz
Editore: Springer (2012)
ISBN 10: 3642646123 ISBN 13: 9783642646126
Nuovo Brossura Quantità: > 20
Da:
California Books
(Miami, FL, U.S.A.)
Valutazione libreria

Descrizione libro Condizione: New. Codice articolo I-9783642646126

Informazioni sul venditore | Contatta il venditore

Compra nuovo
EUR 199,14
Convertire valuta

Aggiungere al carrello

Spese di spedizione: GRATIS
In U.S.A.
Destinazione, tempi e costi