It is a surprising fact that so far almost no books have been published on KAM theory. The first part of this book seems to be the first monographic exposition of this subject, despite the fact that the discussion of KAM theory started as early as 1954 (Komogorov) and was developed later in 1962 by Arnold and Moser. Today, this mathematical field is very popular and well known among physicists and mathematicians.
Le informazioni nella sezione "Riassunto" possono far riferimento a edizioni diverse di questo titolo.
List of General Mathematical Notations.- I. KAM Theory.- I. Symplectic Dynamical Systems.- §1. Symplectic Vector Spaces.- §2. Symplectic Manifolds.- §3. Symplectic Dynamical Systems.- §4. Symplectic Gluing.- §5. Cross-sections.- §6. Generalized Geodesic Flows.- §7. Completely Integrable Hamiltonian Systems.- §8. Systems in an Annulus.- Notes to Chapter I.- II. KAM Theorems.- §9. The KAM Torus.- §10. KAM Set.- §11. The KAM Theorem in an Annulus.- §12. Near a Torus.- §13. Near a Periodic Motion.- §14. Near the Boundary of Planar Convex Billiards.- §15. The Robustness of a KAM Set.- Notes to Chapter II.- III. Beyond the Tori.- §16. General Picture of Stochasticity Near KAM Tori. The Case of More than Two Degrees of Freedom.- §17. Picture of Stochasticity Near KAM Tori in the Case of Two Degrees of Freedom.- Notes to Chapter III.- IV. Proof of the Main Theorem.- §18. Two Reductions.- §19. Machinery.- §20. Description of the Iterative Process.- §21. Reproduction of (20.1i and (20.2i. Convergence of Fi.- §22. Estimates of ?i+1.- §23. Reproduction of (20.3i).- §24. Reproduction of (20.4i).- §25. Convergence of the Process and the Estimate of ? ? — id ?.- §26. Derivatives of G at points of ?n × ?.- §27. The End of the Proof of Theorem 18.10.- §28. Deduction of the Theorem for Discrete Time from That of Continuous Time.- Notes to Chapter IV.- II. Eigenfunctions Asymptotics.- V. Laplace-Beltrami-Schrödinger Operator and Quasimodes.- §29. Basic Facts about Self-Adjoint Operators and Spectra.- §30. Laplace-Beltrami-Schrödinger Operator.- §31. Particular Cases.- §32. Quasimodes.- §33. Degenerated Quasimodes.- Notes to Chapter V.- VI. Maslov’s Canonical Operator.- §34. Assumptions.- §35. The Local Canonical Operator.- §36. The Commutation Rule.- §37. Theory of Maslov’s Indices.- §38. A Global Formula for Maslov’s Operator.- Notes to Chapter VI.- VII. Quasimodes Attached to a KAM Set.- §39. The Canonical Maslov’s Operator Associated with a KAM Set.- §40. Quantum Conditions and the Set ?.- §41. Construction of Quasimodes.- §42. Orthogonality.- Notes to Chapter VII.- Addendum (by A.I. Shnirelman). On the Asymptotic Properties of Eigenfunctions in the Regions of Chaotic Motion.- Appendix I. Manifolds.- Appendix II. Derivatives of Superposition.- Appendix III. The Stationary Phase Method.- References.
Book by Lazutkin Vladimir F
Le informazioni nella sezione "Su questo libro" possono far riferimento a edizioni diverse di questo titolo.
EUR 28,91 per la spedizione da Regno Unito a U.S.A.
Destinazione, tempi e costiEUR 7,63 per la spedizione in U.S.A.
Destinazione, tempi e costiDa: Best Price, Torrance, CA, U.S.A.
Condizione: New. SUPER FAST SHIPPING. Codice articolo 9783642762499
Quantità: 1 disponibili
Da: Lucky's Textbooks, Dallas, TX, U.S.A.
Condizione: New. Codice articolo ABLIING23Mar3113020235804
Quantità: Più di 20 disponibili
Da: Ria Christie Collections, Uxbridge, Regno Unito
Condizione: New. In. Codice articolo ria9783642762499_new
Quantità: Più di 20 disponibili
Da: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germania
Taschenbuch. Condizione: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -It is a surprising fact that so far almost no books have been published on KAM theory. The first part of this book seems to be the first monographic exposition of this subject, despite the fact that the discussion of KAM theory started as early as 1954 (Kolmogorov) and was developed later in 1962 by Arnold and Moser. Today, this mathematical field is very popular and well known among physicists and mathematicians. In the first part of this Ergebnisse-Bericht, Lazutkin succeeds in giving a complete and self-contained exposition of the subject, including a part on Hamiltonian dynamics. The main results concern the existence and persistence of KAM theory, their smooth dependence on the frequency, and the estimate of the measure of the set filled by KAM theory. The second part is devoted to the construction of the semiclassical asymptotics to the eigenfunctions of the generalized Schrödinger operator. The main result is the asymptotic formulae for eigenfunctions and eigenvalues, using Maslov`s operator, for the set of eigenvalues of positive density in the set of all eigenvalues. An addendum by Prof. A.I. Shnirelman treats eigenfunctions corresponding to the 'chaotic component' of the phase space. 400 pp. Englisch. Codice articolo 9783642762499
Quantità: 2 disponibili
Da: Books Puddle, New York, NY, U.S.A.
Condizione: New. pp. IX + 387. Codice articolo 2654510422
Quantità: 4 disponibili
Da: Majestic Books, Hounslow, Regno Unito
Condizione: New. Print on Demand pp. IX + 387 66 Figures. Codice articolo 55082121
Quantità: 4 disponibili
Da: Biblios, Frankfurt am main, HESSE, Germania
Condizione: New. PRINT ON DEMAND pp. IX + 387. Codice articolo 1854510428
Quantità: 4 disponibili
Da: moluna, Greven, Germania
Condizione: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. It is a surprising fact that so far almost no books have been published on KAM theory. The first part of this book seems to be the first monographic exposition of this subject, despite the fact that the discussion of KAM theory started as early as 1954 (Kom. Codice articolo 5070001
Quantità: Più di 20 disponibili
Da: Revaluation Books, Exeter, Regno Unito
Paperback. Condizione: Brand New. reprint edition. 387 pages. 9.50x7.00x0.75 inches. In Stock. Codice articolo x-3642762492
Quantità: 2 disponibili
Da: buchversandmimpf2000, Emtmannsberg, BAYE, Germania
Taschenbuch. Condizione: Neu. This item is printed on demand - Print on Demand Titel. Neuware -It is a surprising fact that so far almost no books have been published on KAM theory. The first part of this book seems to be the first monographic exposition of this subject, despite the fact that the discussion of KAM theory started as early as 1954 (Komogorov) and was developed later in 1962 by Arnold and Moser. Today, this mathematical field is very popular and well known among physicists and mathematicians.Springer-Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 400 pp. Englisch. Codice articolo 9783642762499
Quantità: 1 disponibili