Articoli correlati a Automated Detection of Hematological Patterns Through...

Automated Detection of Hematological Patterns Through Machine Learning: Using Feature Extraction And Artificial Neural Networks for Pattern Recognition - Brossura

 
9783659333651: Automated Detection of Hematological Patterns Through Machine Learning: Using Feature Extraction And Artificial Neural Networks for Pattern Recognition

Sinossi

The use of hematological analyzers has become routine in clinical practice, but the sheer volume of data produced by these devices often makes manual inspection of all the results an unwieldy task. For this reason, automated pattern analysis through the use of machine learning has been used in these types of situations, to save time and to provide invaluable aid to medical professionals in this area of diagnostic medicine. Toward this end, Artificial Neural Networks (ANNs) are often relied upon in the field of machine learning, because of their ability to distill representative feature components from large amounts of input data. This paper details an approach in which the scatterplots of cells that were produced by a hematological device were used as inputs. The data were separated into two classes, one containing clinically Normal samples, and the second containing abnormal samples that contained Variant Lymphocytes. Statistical features were extracted from these data using Principal Component Analysis (PCA) and then a Perceptron ANN was employed to differentiate between the two classes of data. The accuracy of pattern classification using this method was then discussed.

Le informazioni nella sezione "Riassunto" possono far riferimento a edizioni diverse di questo titolo.

L'autore

B.S. in Electrical Engineering, Florida International University, Miami, Florida, 1999.M.S in Computer Engineering, Florida International University, Miami, Florida, 2003.Ph.D. in Electrical Engineering, Florida International University, Miami, Florida, 2011.Senior Software Engineer, Beckman Coulter Corporation, Miami, Florida, 2004-Present.

Le informazioni nella sezione "Su questo libro" possono far riferimento a edizioni diverse di questo titolo.

EUR 9,70 per la spedizione da Germania a Italia

Destinazione, tempi e costi

Risultati della ricerca per Automated Detection of Hematological Patterns Through...

Immagini fornite dal venditore

Mark Rossman
ISBN 10: 3659333654 ISBN 13: 9783659333651
Nuovo Brossura
Print on Demand

Da: moluna, Greven, Germania

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Autor/Autorin: Rossman MarkB.S. in Electrical Engineering, Florida International University, Miami, Florida, 1999.M.S in Computer Engineering, Florida International University, Miami, Florida, 2003.Ph.D. in Electrical Engineering, Florida Internati. Codice articolo 5149234

Contatta il venditore

Compra nuovo

EUR 34,25
Convertire valuta
Spese di spedizione: EUR 9,70
Da: Germania a: Italia
Destinazione, tempi e costi

Quantità: Più di 20 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

Mark Rossman
ISBN 10: 3659333654 ISBN 13: 9783659333651
Nuovo Taschenbuch
Print on Demand

Da: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germania

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Taschenbuch. Condizione: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -The use of hematological analyzers has become routine in clinical practice, but the sheer volume of data produced by these devices often makes manual inspection of all the results an unwieldy task. For this reason, automated pattern analysis through the use of machine learning has been used in these types of situations, to save time and to provide invaluable aid to medical professionals in this area of diagnostic medicine. Toward this end, Artificial Neural Networks (ANNs) are often relied upon in the field of machine learning, because of their ability to distill representative feature components from large amounts of input data. This paper details an approach in which the scatterplots of cells that were produced by a hematological device were used as inputs. The data were separated into two classes, one containing clinically Normal samples, and the second containing abnormal samples that contained Variant Lymphocytes. Statistical features were extracted from these data using Principal Component Analysis (PCA) and then a Perceptron ANN was employed to differentiate between the two classes of data. The accuracy of pattern classification using this method was then discussed. 128 pp. Englisch. Codice articolo 9783659333651

Contatta il venditore

Compra nuovo

EUR 39,90
Convertire valuta
Spese di spedizione: EUR 11,00
Da: Germania a: Italia
Destinazione, tempi e costi

Quantità: 2 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

Mark Rossman
ISBN 10: 3659333654 ISBN 13: 9783659333651
Nuovo Taschenbuch
Print on Demand

Da: AHA-BUCH GmbH, Einbeck, Germania

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Taschenbuch. Condizione: Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - The use of hematological analyzers has become routine in clinical practice, but the sheer volume of data produced by these devices often makes manual inspection of all the results an unwieldy task. For this reason, automated pattern analysis through the use of machine learning has been used in these types of situations, to save time and to provide invaluable aid to medical professionals in this area of diagnostic medicine. Toward this end, Artificial Neural Networks (ANNs) are often relied upon in the field of machine learning, because of their ability to distill representative feature components from large amounts of input data. This paper details an approach in which the scatterplots of cells that were produced by a hematological device were used as inputs. The data were separated into two classes, one containing clinically Normal samples, and the second containing abnormal samples that contained Variant Lymphocytes. Statistical features were extracted from these data using Principal Component Analysis (PCA) and then a Perceptron ANN was employed to differentiate between the two classes of data. The accuracy of pattern classification using this method was then discussed. Codice articolo 9783659333651

Contatta il venditore

Compra nuovo

EUR 39,90
Convertire valuta
Spese di spedizione: EUR 14,99
Da: Germania a: Italia
Destinazione, tempi e costi

Quantità: 1 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

Mark Rossman
ISBN 10: 3659333654 ISBN 13: 9783659333651
Nuovo Taschenbuch

Da: buchversandmimpf2000, Emtmannsberg, BAYE, Germania

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Taschenbuch. Condizione: Neu. Neuware -The use of hematological analyzers has become routine in clinical practice, but the sheer volume of data produced by these devices often makes manual inspection of all the results an unwieldy task. For this reason, automated pattern analysis through the use of machine learning has been used in these types of situations, to save time and to provide invaluable aid to medical professionals in this area of diagnostic medicine. Toward this end, Artificial Neural Networks (ANNs) are often relied upon in the field of machine learning, because of their ability to distill representative feature components from large amounts of input data. This paper details an approach in which the scatterplots of cells that were produced by a hematological device were used as inputs. The data were separated into two classes, one containing clinically Normal samples, and the second containing abnormal samples that contained Variant Lymphocytes. Statistical features were extracted from these data using Principal Component Analysis (PCA) and then a Perceptron ANN was employed to differentiate between the two classes of data. The accuracy of pattern classification using this method was then discussed.Books on Demand GmbH, Überseering 33, 22297 Hamburg 128 pp. Englisch. Codice articolo 9783659333651

Contatta il venditore

Compra nuovo

EUR 39,90
Convertire valuta
Spese di spedizione: EUR 15,00
Da: Germania a: Italia
Destinazione, tempi e costi

Quantità: 2 disponibili

Aggiungi al carrello

Foto dell'editore

Rossman, Mark
ISBN 10: 3659333654 ISBN 13: 9783659333651
Nuovo Brossura

Da: Books Puddle, New York, NY, U.S.A.

Valutazione del venditore 4 su 5 stelle 4 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: New. pp. 128. Codice articolo 26128412829

Contatta il venditore

Compra nuovo

EUR 55,44
Convertire valuta
Spese di spedizione: EUR 7,68
Da: U.S.A. a: Italia
Destinazione, tempi e costi

Quantità: 4 disponibili

Aggiungi al carrello

Foto dell'editore

Rossman, Mark
ISBN 10: 3659333654 ISBN 13: 9783659333651
Nuovo Brossura
Print on Demand

Da: Majestic Books, Hounslow, Regno Unito

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: New. Print on Demand pp. 128 2:B&W 6 x 9 in or 229 x 152 mm Perfect Bound on Creme w/Gloss Lam. Codice articolo 131126082

Contatta il venditore

Compra nuovo

EUR 55,93
Convertire valuta
Spese di spedizione: EUR 10,23
Da: Regno Unito a: Italia
Destinazione, tempi e costi

Quantità: 4 disponibili

Aggiungi al carrello

Foto dell'editore

Rossman, Mark
ISBN 10: 3659333654 ISBN 13: 9783659333651
Nuovo Brossura
Print on Demand

Da: Biblios, Frankfurt am main, HESSE, Germania

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: New. PRINT ON DEMAND pp. 128. Codice articolo 18128412823

Contatta il venditore

Compra nuovo

EUR 58,47
Convertire valuta
Spese di spedizione: EUR 7,95
Da: Germania a: Italia
Destinazione, tempi e costi

Quantità: 4 disponibili

Aggiungi al carrello