This research work deals with the procedures for computing the presence of outliers using various distance measures and general detection performance for unsupervised machine learning, such as the K-Mean Clustering Analysis and Principal Component Analysis. A comprehensive evaluation of Data Mining Techniques, Machine Learning and Predictive modelling for Unsupervised Anomaly Detection Algorithms on Electronic Banking Transaction data sets record for over a period of six (6) months, April to September, 2015, consisting of 9 variable data fields and 8,641 observations, were used to carry out the survey on fraud detection. On completion of the underlying system, I can conclude that integrated techniques system provide better performance efficiency than a singular system. Besides, in near real-time settings, if a faster computation is required for larger data sets, just like the unlabelled data sets used for this research work, clustering based method is preferred to classification model.
Le informazioni nella sezione "Riassunto" possono far riferimento a edizioni diverse di questo titolo.
Enoch Sayo Aluko, a CIE Examiner and Assessment Specialist attended University of Lagos, where he obtained B.Sc, in Education Mathematics and M.Sc., in Statistics. Besides, he has Diploma in Data Mining (SIIT) and a Certificate Course in Data Management and Visualization (Wesleyan University). He is a member of the Nigeria Mathematical Society.
Le informazioni nella sezione "Su questo libro" possono far riferimento a edizioni diverse di questo titolo.
EUR 9,70 per la spedizione da Germania a Italia
Destinazione, tempi e costiDa: moluna, Greven, Germania
Condizione: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Autor/Autorin: Aluko Sayo EnochEnoch Sayo Aluko, a CIE Examiner and Assessment Specialist attended University of Lagos, where he obtained B.Sc, in Education Mathematics and M.Sc., in Statistics. Besides, he has Diploma in Data Mining (SIIT) and a C. Codice articolo 385770758
Quantità: Più di 20 disponibili
Da: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germania
Taschenbuch. Condizione: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -This research work deals with the procedures for computing the presence of outliers using various distance measures and general detection performance for unsupervised machine learning, such as the K-Mean Clustering Analysis and Principal Component Analysis. A comprehensive evaluation of Data Mining Techniques, Machine Learning and Predictive modelling for Unsupervised Anomaly Detection Algorithms on Electronic Banking Transaction data sets record for over a period of six (6) months, April to September, 2015, consisting of 9 variable data fields and 8,641 observations, were used to carry out the survey on fraud detection. On completion of the underlying system, I can conclude that integrated techniques system provide better performance efficiency than a singular system. Besides, in near real-time settings, if a faster computation is required for larger data sets, just like the unlabelled data sets used for this research work, clustering based method is preferred to classification model. 80 pp. Englisch. Codice articolo 9783659916878
Quantità: 2 disponibili
Da: AHA-BUCH GmbH, Einbeck, Germania
Taschenbuch. Condizione: Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - This research work deals with the procedures for computing the presence of outliers using various distance measures and general detection performance for unsupervised machine learning, such as the K-Mean Clustering Analysis and Principal Component Analysis. A comprehensive evaluation of Data Mining Techniques, Machine Learning and Predictive modelling for Unsupervised Anomaly Detection Algorithms on Electronic Banking Transaction data sets record for over a period of six (6) months, April to September, 2015, consisting of 9 variable data fields and 8,641 observations, were used to carry out the survey on fraud detection. On completion of the underlying system, I can conclude that integrated techniques system provide better performance efficiency than a singular system. Besides, in near real-time settings, if a faster computation is required for larger data sets, just like the unlabelled data sets used for this research work, clustering based method is preferred to classification model. Codice articolo 9783659916878
Quantità: 1 disponibili
Da: buchversandmimpf2000, Emtmannsberg, BAYE, Germania
Taschenbuch. Condizione: Neu. Neuware -This research work deals with the procedures for computing the presence of outliers using various distance measures and general detection performance for unsupervised machine learning, such as the K-Mean Clustering Analysis and Principal Component Analysis. A comprehensive evaluation of Data Mining Techniques, Machine Learning and Predictive modelling for Unsupervised Anomaly Detection Algorithms on Electronic Banking Transaction data sets record for over a period of six (6) months, April to September, 2015, consisting of 9 variable data fields and 8,641 observations, were used to carry out the survey on fraud detection. On completion of the underlying system, I can conclude that integrated techniques system provide better performance efficiency than a singular system. Besides, in near real-time settings, if a faster computation is required for larger data sets, just like the unlabelled data sets used for this research work, clustering based method is preferred to classification model.Books on Demand GmbH, Überseering 33, 22297 Hamburg 80 pp. Englisch. Codice articolo 9783659916878
Quantità: 2 disponibili
Da: Revaluation Books, Exeter, Regno Unito
Paperback. Condizione: Brand New. 80 pages. 8.66x5.91x0.19 inches. In Stock. Codice articolo 3659916870
Quantità: 1 disponibili