Articoli correlati a Electronic Banking Fraud Detection: Using Data Mining...

Electronic Banking Fraud Detection: Using Data Mining Techniques And R Software For Implementing Machine Learning Algorithms In Prevention Of Fraud - Brossura

 
9783659916878: Electronic Banking Fraud Detection: Using Data Mining Techniques And R Software For Implementing Machine Learning Algorithms In Prevention Of Fraud

Sinossi

This research work deals with the procedures for computing the presence of outliers using various distance measures and general detection performance for unsupervised machine learning, such as the K-Mean Clustering Analysis and Principal Component Analysis. A comprehensive evaluation of Data Mining Techniques, Machine Learning and Predictive modelling for Unsupervised Anomaly Detection Algorithms on Electronic Banking Transaction data sets record for over a period of six (6) months, April to September, 2015, consisting of 9 variable data fields and 8,641 observations, were used to carry out the survey on fraud detection. On completion of the underlying system, I can conclude that integrated techniques system provide better performance efficiency than a singular system. Besides, in near real-time settings, if a faster computation is required for larger data sets, just like the unlabelled data sets used for this research work, clustering based method is preferred to classification model.

Le informazioni nella sezione "Riassunto" possono far riferimento a edizioni diverse di questo titolo.

Informazioni sull?autore

Enoch Sayo Aluko, a CIE Examiner and Assessment Specialist attended University of Lagos, where he obtained B.Sc, in Education Mathematics and M.Sc., in Statistics. Besides, he has Diploma in Data Mining (SIIT) and a Certificate Course in Data Management and Visualization (Wesleyan University). He is a member of the Nigeria Mathematical Society.

Le informazioni nella sezione "Su questo libro" possono far riferimento a edizioni diverse di questo titolo.

EUR 9,70 per la spedizione da Germania a Italia

Destinazione, tempi e costi

Risultati della ricerca per Electronic Banking Fraud Detection: Using Data Mining...

Immagini fornite dal venditore

Sayo Enoch Aluko
ISBN 10: 3659916870 ISBN 13: 9783659916878
Nuovo Brossura
Print on Demand

Da: moluna, Greven, Germania

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Autor/Autorin: Aluko Sayo EnochEnoch Sayo Aluko, a CIE Examiner and Assessment Specialist attended University of Lagos, where he obtained B.Sc, in Education Mathematics and M.Sc., in Statistics. Besides, he has Diploma in Data Mining (SIIT) and a C. Codice articolo 385770758

Contatta il venditore

Compra nuovo

EUR 31,27
Convertire valuta
Spese di spedizione: EUR 9,70
Da: Germania a: Italia
Destinazione, tempi e costi

Quantità: Più di 20 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

Sayo Enoch Aluko
ISBN 10: 3659916870 ISBN 13: 9783659916878
Nuovo Taschenbuch
Print on Demand

Da: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germania

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Taschenbuch. Condizione: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -This research work deals with the procedures for computing the presence of outliers using various distance measures and general detection performance for unsupervised machine learning, such as the K-Mean Clustering Analysis and Principal Component Analysis. A comprehensive evaluation of Data Mining Techniques, Machine Learning and Predictive modelling for Unsupervised Anomaly Detection Algorithms on Electronic Banking Transaction data sets record for over a period of six (6) months, April to September, 2015, consisting of 9 variable data fields and 8,641 observations, were used to carry out the survey on fraud detection. On completion of the underlying system, I can conclude that integrated techniques system provide better performance efficiency than a singular system. Besides, in near real-time settings, if a faster computation is required for larger data sets, just like the unlabelled data sets used for this research work, clustering based method is preferred to classification model. 80 pp. Englisch. Codice articolo 9783659916878

Contatta il venditore

Compra nuovo

EUR 35,90
Convertire valuta
Spese di spedizione: EUR 11,00
Da: Germania a: Italia
Destinazione, tempi e costi

Quantità: 2 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

Sayo Enoch Aluko
ISBN 10: 3659916870 ISBN 13: 9783659916878
Nuovo Taschenbuch
Print on Demand

Da: AHA-BUCH GmbH, Einbeck, Germania

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Taschenbuch. Condizione: Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - This research work deals with the procedures for computing the presence of outliers using various distance measures and general detection performance for unsupervised machine learning, such as the K-Mean Clustering Analysis and Principal Component Analysis. A comprehensive evaluation of Data Mining Techniques, Machine Learning and Predictive modelling for Unsupervised Anomaly Detection Algorithms on Electronic Banking Transaction data sets record for over a period of six (6) months, April to September, 2015, consisting of 9 variable data fields and 8,641 observations, were used to carry out the survey on fraud detection. On completion of the underlying system, I can conclude that integrated techniques system provide better performance efficiency than a singular system. Besides, in near real-time settings, if a faster computation is required for larger data sets, just like the unlabelled data sets used for this research work, clustering based method is preferred to classification model. Codice articolo 9783659916878

Contatta il venditore

Compra nuovo

EUR 35,90
Convertire valuta
Spese di spedizione: EUR 14,99
Da: Germania a: Italia
Destinazione, tempi e costi

Quantità: 1 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

Sayo Enoch Aluko
ISBN 10: 3659916870 ISBN 13: 9783659916878
Nuovo Taschenbuch

Da: buchversandmimpf2000, Emtmannsberg, BAYE, Germania

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Taschenbuch. Condizione: Neu. Neuware -This research work deals with the procedures for computing the presence of outliers using various distance measures and general detection performance for unsupervised machine learning, such as the K-Mean Clustering Analysis and Principal Component Analysis. A comprehensive evaluation of Data Mining Techniques, Machine Learning and Predictive modelling for Unsupervised Anomaly Detection Algorithms on Electronic Banking Transaction data sets record for over a period of six (6) months, April to September, 2015, consisting of 9 variable data fields and 8,641 observations, were used to carry out the survey on fraud detection. On completion of the underlying system, I can conclude that integrated techniques system provide better performance efficiency than a singular system. Besides, in near real-time settings, if a faster computation is required for larger data sets, just like the unlabelled data sets used for this research work, clustering based method is preferred to classification model.Books on Demand GmbH, Überseering 33, 22297 Hamburg 80 pp. Englisch. Codice articolo 9783659916878

Contatta il venditore

Compra nuovo

EUR 35,90
Convertire valuta
Spese di spedizione: EUR 15,00
Da: Germania a: Italia
Destinazione, tempi e costi

Quantità: 2 disponibili

Aggiungi al carrello

Foto dell'editore

Aluko, Sayo Enoch
ISBN 10: 3659916870 ISBN 13: 9783659916878
Nuovo Paperback

Da: Revaluation Books, Exeter, Regno Unito

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Paperback. Condizione: Brand New. 80 pages. 8.66x5.91x0.19 inches. In Stock. Codice articolo 3659916870

Contatta il venditore

Compra nuovo

EUR 66,02
Convertire valuta
Spese di spedizione: EUR 11,58
Da: Regno Unito a: Italia
Destinazione, tempi e costi

Quantità: 1 disponibili

Aggiungi al carrello