In the last decade of the 20th century, there has been great progress in the physics of earthquake generation; that is, the introduction of laboratory-based fault constitutive laws as a basic equation governing earthquake rupture, quantitative description of tectonic loading driven by plate motion, and a microscopic approach to study fault zone processes. The fault constitutive law plays the role of an interface between microscopic processes in fault zones and macroscopic processes of a fault system, and the plate motion connects diverse crustal activities with mantle dynamics. An ambitious challenge for us is to develop realistic computer simulation models for the complete earthquake process on the basis of microphysics in fault zones and macro-dynamics in the crust-mantle system. Recent advances in high performance computer technology and numerical simulation methodology are bringing this vision within reach. The book consists of two parts and presents a cross-section of cutting-edge research in the field of computational earthquake physics. Part I includes works on microphysics of rupture and fault constitutive laws, and dynamic rupture, wave propagation and strong ground motion. Part II covers earthquake cycles, crustal deformation, plate dynamics, and seismicity change and its physical interpretation. Topics in Part II range from the 3-D simulations of earthquake generation cycles and interseismic crustal deformation associated with plate subduction to the development of new methods for analyzing geophysical and geodetical data and new simulation algorithms for large amplitude folding and mantle convection with viscoelastic/brittle lithosphere, as well as a theoretical study of accelerated seismic release on heterogeneous faults, simulation of long-range automaton models of earthquakes, and various approaches to earthquake predicition based on underlying physical and/or statistical models for seismicity change.
Le informazioni nella sezione "Riassunto" possono far riferimento a edizioni diverse di questo titolo.
A. Earthquake Cycles, Crustal Deformation and Plate Dynamics.- 3-D Simulation of Earthquake Generation Cycles and Evolution of Fault Constitutive Properties.- Interplate Earthquake Fault Slip During Periodic Earthquake Cycles in a Viscoelastic Medium at a Subduction Zone.- Development of a Finite Element Simulator for Crustal Deformation with Large Fault Slipping.- 3-D Viscoelastic FEM Modeling of Crustal Deformation in Northeast Japan.- Combined GPS and InSAR Models of Postseismic Deformation from the Northridge Earthquake.- A Hidden Markov Model Based Tool for Geophysical Data Exploration.- Geophysical Applications of Multidimensional Filtering with Wavelets.- Large Amplitude Folding in Finely Layered Viscoelastic Rock Structures.- Mantle Convection Modeling with Viscoelastic/Brittle Lithosphere: Numerical Methodology and Plate Tectonic Modeling.- GEM Plate Boundary Simulations for the Plate Boundary Observatory: A Program for Understanding the Physics of Earthquakes on Complex Fault Networks via Observations, Theory and Numerical Simulation.- B. Seismicity Change and its Physical Interpretation.- Accelerated Seismic Release and Related Aspects of Seismicity Patterns on Earthquake Faults.- Stress Correlation Function Evolution in Lattice Solid Elasto-dynamic Models of Shear and Fracture Zones and Earthquake Prediction.- Pattern Dynamics and Forecast Methods in Seismically Active Regions.- Long-range Automaton Models of Earthquakes: Power-law Accelerations, Correlation Evolution, and Mode-switching.- Critical Sensitivity and Trans-scale Fluctuations in Catastrophic Rupture.- Load—Unload Response Ratio and Accelerating Moment/Energy Release Critical Region Scaling and Earthquake Prediction.- Simulation of the Load—Unload Response Ratio and Critical Sensitivity in the Lattice Solid Model.
Le informazioni nella sezione "Su questo libro" possono far riferimento a edizioni diverse di questo titolo.
EUR 10,00 per la spedizione da Germania a Italia
Destinazione, tempi e costiEUR 9,70 per la spedizione da Germania a Italia
Destinazione, tempi e costiDa: Universitätsbuchhandlung Herta Hold GmbH, Berlin, Germania
2002. IV, 367 S. IV, 367 p. 195 illus., 39 illus. in color. Softcover. Versand aus Deutschland / We dispatch from Germany via Air Mail. Einband bestoßen, daher Mängelexemplar gestempelt, sonst sehr guter Zustand. Imperfect copy due to slightly bumped cover, apart from this in very good condition. Stamped. (Pageoph Topical Volumes). Sprache: Englisch. Codice articolo 351ZB
Quantità: 2 disponibili
Da: moluna, Greven, Germania
Kartoniert / Broschiert. Condizione: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. In the last decade of the 20th century, there has been great progress in the physics of earthquake generation that is, the introduction of laboratory-based fault constitutive laws as a basic equation governing earthquake rupture, quantitative description o. Codice articolo 5279531
Quantità: Più di 20 disponibili
Da: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germania
Taschenbuch. Condizione: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -In the last decade of the 20th century, there has been great progress in the physics of earthquake generation; that is, the introduction of laboratory-based fault constitutive laws as a basic equation governing earthquake rupture, quantitative description of tectonic loading driven by plate motion, and a microscopic approach to study fault zone processes. The fault constitutive law plays the role of an interface between microscopic processes in fault zones and macroscopic processes of a fault system, and the plate motion connects diverse crustal activities with mantle dynamics. An ambitious challenge for us is to develop realistic computer simulation models for the complete earthquake process on the basis of microphysics in fault zones and macro-dynamics in the crust-mantle system. Recent advances in high performance computer technology and numerical simulation methodology are bringing this vision within reach. The book consists of two parts and presents a cross-section of cutting-edge research in the field of computational earthquake physics. Part I includes works on microphysics of rupture and fault constitutive laws, and dynamic rupture, wave propagation and strong ground motion. Part II covers earthquake cycles, crustal deformation, plate dynamics, and seismicity change and its physical interpretation. Topics in Part II range from the 3-D simulations of earthquake generation cycles and interseismic crustal deformation associated with plate subduction to the development of new methods for analyzing geophysical and geodetical data and new simulation algorithms for large amplitude folding and mantle convection with viscoelastic/brittle lithosphere, as well as a theoretical study of accelerated seismic release on heterogeneous faults, simulation of long-range automaton models of earthquakes, and various approaches to earthquake predicition based on underlying physical and/or statistical models for seismicity change. 367 pp. Englisch. Codice articolo 9783764369163
Quantità: 2 disponibili
Da: AHA-BUCH GmbH, Einbeck, Germania
Taschenbuch. Condizione: Neu. Druck auf Anfrage Neuware - Printed after ordering - In the last decade of the 20th century, there has been great progress in the physics of earthquake generation; that is, the introduction of laboratory-based fault constitutive laws as a basic equation governing earthquake rupture, quantitative description of tectonic loading driven by plate motion, and a microscopic approach to study fault zone processes. The fault constitutive law plays the role of an interface between microscopic processes in fault zones and macroscopic processes of a fault system, and the plate motion connects diverse crustal activities with mantle dynamics. An ambitious challenge for us is to develop realistic computer simulation models for the complete earthquake process on the basis of microphysics in fault zones and macro-dynamics in the crust-mantle system. Recent advances in high performance computer technology and numerical simulation methodology are bringing this vision within reach. The book consists of two parts and presents a cross-section of cutting-edge research in the field of computational earthquake physics. Part I includes works on microphysics of rupture and fault constitutive laws, and dynamic rupture, wave propagation and strong ground motion. Part II covers earthquake cycles, crustal deformation, plate dynamics, and seismicity change and its physical interpretation. Topics in Part II range from the 3-D simulations of earthquake generation cycles and interseismic crustal deformation associated with plate subduction to the development of new methods for analyzing geophysical and geodetical data and new simulation algorithms for large amplitude folding and mantle convection with viscoelastic/brittle lithosphere, as well as a theoretical study of accelerated seismic release on heterogeneous faults, simulation of long-range automaton models of earthquakes, and various approaches to earthquake predicition based on underlying physical and/or statistical models for seismicity change. Codice articolo 9783764369163
Quantità: 1 disponibili
Da: buchversandmimpf2000, Emtmannsberg, BAYE, Germania
Taschenbuch. Condizione: Neu. Neuware -In the last decade of the 20th century, there has been great progress in the physics of earthquake generation; that is, the introduction of laboratory-based fault constitutive laws as a basic equation governing earthquake rupture, quantitative description of tectonic loading driven by plate motion, and a microscopic approach to study fault zone processes. The fault constitutive law plays the role of an interface between microscopic processes in fault zones and macroscopic processes of a fault system, and the plate motion connects diverse crustal activities with mantle dynamics. An ambitious challenge for us is to develop realistic computer simulation models for the complete earthquake process on the basis of microphysics in fault zones and macro-dynamics in the crust-mantle system. Recent advances in high performance computer technology and numerical simulation methodology are bringing this vision within reach. The book consists of two parts and presents a cross-section of cutting-edge research in the field of computational earthquake physics. Part I includes works on microphysics of rupture and fault constitutive laws, and dynamic rupture, wave propagation and strong ground motion. Part II covers earthquake cycles, crustal deformation, plate dynamics, and seismicity change and its physical interpretation. Topics in Part II range from the 3-D simulations of earthquake generation cycles and interseismic crustal deformation associated with plate subduction to the development of new methods for analyzing geophysical and geodetical data and new simulation algorithms for large amplitude folding and mantle convection with viscoelastic/brittle lithosphere, as well as a theoretical study of accelerated seismic release on heterogeneous faults, simulation of long-range automaton models of earthquakes, and various approaches to earthquake predicition based on underlying physical and/or statistical models for seismicity change.Springer Basel AG in Springer Science + Business Media, Heidelberger Platz 3, 14197 Berlin 376 pp. Englisch. Codice articolo 9783764369163
Quantità: 2 disponibili
Da: California Books, Miami, FL, U.S.A.
Condizione: New. Codice articolo I-9783764369163
Quantità: Più di 20 disponibili
Da: Books Puddle, New York, NY, U.S.A.
Condizione: New. pp. 376. Codice articolo 2614421998
Quantità: 4 disponibili
Da: Biblios, Frankfurt am main, HESSE, Germania
Condizione: New. PRINT ON DEMAND pp. 376. Codice articolo 1814421988
Quantità: 4 disponibili
Da: Majestic Books, Hounslow, Regno Unito
Condizione: New. Print on Demand pp. 376 62 Illus. Codice articolo 11251761
Quantità: 4 disponibili
Da: Revaluation Books, Exeter, Regno Unito
Paperback. Condizione: Brand New. 1st edition. 372 pages. 9.00x6.50x0.75 inches. In Stock. Codice articolo x-3764369167
Quantità: 2 disponibili