Information retrieval (IR) aims at defining systems able to provide a fast and effective content-based access to a large amount of stored information. The aim of an IR system is to estimate the relevance of documents to users' information needs, expressed by means of a query. This is a very difficult and complex task, since it is pervaded with imprecision and uncertainty. Most of the existing IR systems offer a very simple model of IR, which privileges efficiency at the expense of effectiveness. A promising direction to increase the effectiveness of IR is to model the concept of "partially intrinsic" in the IR process and to make the systems adaptive, i.e. able to "learn" the user's concept of relevance. To this aim, the application of soft computing techniques can be of help to obtain greater flexibility in IR systems.
Le informazioni nella sezione "Riassunto" possono far riferimento a edizioni diverse di questo titolo.
Fuzzy Set Theory: R.R. Yager: A Framework for Linguistic and Hierarchical Queries in Document Retrieval.- G. Bordogna, G. Pasi: Application of Fuzzy Set Theory to Extend Boolean Information Retrieval.- L. Kóczy, T. Gedeon: A Model of Intelligent Information Retrieval Using Fuzzy Tolerance Relations Based on Hierarchical Co-Occurence of Words.- J.-W. Lim: Visual Keywords: from Text Retrieval to Multimedia Retrieval.- D. Merkl, A. Rauber: Document Classification with Unsupervised Artificial Neural Networks.- H. Chen, M. Ramsey, P. Li: The Java Search Agent Workshop.- S. Zrehen: A Connectionist Approach to Content Access in Documents: Application to Detection of Jokes.- Genetic Algorithms: M. Boughanem, C. Chrismet, J. Mothe, C. Soule-Dupuy, L. Tamine: Connectionist and Genetic Approaches for Information Retrieval.- D. Vrajizoru: Large Population or Many Generations for Genetic Algorithms? Implications in Information Retrieval.- Evidential and Probabilistic Reasoning: J. Picard, J. Savoy: A Logical Information Retrieval Model Based on a Combination of Propositional Logic and Probability Theory.- B. Ribeiro-Neto, I. Silva, R. Muntz: Bayesian Network Models for Information Retrieval.- G. Amati, F. Crestani: Probabilistic Learning by Uncertainty Sampling with Non-Binary Relevance.- Rough Sets Theory, Multivalued Logics, and Other Approaches: S.K.M. Wong, Y.Y. Yao, C.J. Butz: Granular Information Retrieval.- U. Straccia: A Framework for the Retrieval of Multimedia Objects Based on Four-Valued Fuzzy Descritpion Logics.- P. Srinivasan, D. Kraft, J. Chen: Rough and Fuzzy Sets for Data Mining of a Controlles Vocabulary for Textual Retrieval.- S. Miyamoto: Rough Sets and Multisets in a Model of Information Retrieval.
Le informazioni nella sezione "Su questo libro" possono far riferimento a edizioni diverse di questo titolo.
EUR 29,73 per la spedizione da Regno Unito a U.S.A.
Destinazione, tempi e costiEUR 3,55 per la spedizione in U.S.A.
Destinazione, tempi e costiDa: Lucky's Textbooks, Dallas, TX, U.S.A.
Condizione: New. Codice articolo ABLIING23Apr0316110061527
Quantità: Più di 20 disponibili
Da: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germania
Taschenbuch. Condizione: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Information retrieval (IR) aims at defining systems able to provide a fast and effective content-based access to a large amount of stored information. The aim of an IR system is to estimate the relevance of documents to users' information needs, expressed by means of a query. This is a very difficult and complex task, since it is pervaded with imprecision and uncertainty. Most of the existing IR systems offer a very simple model of IR, which privileges efficiency at the expense of effectiveness. A promising direction to increase the effectiveness of IR is to model the concept of 'partially intrinsic' in the IR process and to make the systems adaptive, i.e. able to 'learn' the user's concept of relevance. To this aim, the application of soft computing techniques can be of help to obtain greater flexibility in IR systems. 396 pp. Englisch. Codice articolo 9783790824735
Quantità: 2 disponibili
Da: Ria Christie Collections, Uxbridge, Regno Unito
Condizione: New. In. Codice articolo ria9783790824735_new
Quantità: Più di 20 disponibili
Da: moluna, Greven, Germania
Condizione: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Information retrieval (IR) aims at defining systems able to provide a fast and effective content-based access to a large amount of stored information. The aim of an IR system is to estimate the relevance of documents to users information needs, expressed b. Codice articolo 5310740
Quantità: Più di 20 disponibili
Da: AHA-BUCH GmbH, Einbeck, Germania
Taschenbuch. Condizione: Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - Information retrieval (IR) aims at defining systems able to provide a fast and effective content-based access to a large amount of stored information. The aim of an IR system is to estimate the relevance of documents to users' information needs, expressed by means of a query. This is a very difficult and complex task, since it is pervaded with imprecision and uncertainty. Most of the existing IR systems offer a very simple model of IR, which privileges efficiency at the expense of effectiveness. A promising direction to increase the effectiveness of IR is to model the concept of 'partially intrinsic' in the IR process and to make the systems adaptive, i.e. able to 'learn' the user's concept of relevance. To this aim, the application of soft computing techniques can be of help to obtain greater flexibility in IR systems. Codice articolo 9783790824735
Quantità: 1 disponibili
Da: Books Puddle, New York, NY, U.S.A.
Condizione: New. pp. 410. Codice articolo 262143470
Quantità: 4 disponibili
Da: Majestic Books, Hounslow, Regno Unito
Condizione: New. Print on Demand pp. 410 49:B&W 6.14 x 9.21 in or 234 x 156 mm (Royal 8vo) Perfect Bound on White w/Gloss Lam. Codice articolo 5704497
Quantità: 4 disponibili
Da: Biblios, Frankfurt am main, HESSE, Germania
Condizione: New. PRINT ON DEMAND pp. 410. Codice articolo 182143460
Quantità: 4 disponibili
Da: Mispah books, Redhill, SURRE, Regno Unito
Paperback. Condizione: Like New. Like New. book. Codice articolo ERICA79037908247396
Quantità: 1 disponibili