This work tries to address the problem of assessing the long term dynamics of control systems described by linear, stochastic, differential equations upon application of high gain, proportional, output feedback. Stability of such stochastic systems is characterized by moment exponents and rotation numbers. We present two analytical techniques to determine mean or else almost sure stability and rotation in state space. The first is projection onto the unit sphere, derivation of the associated Fokker-Planck equation on projective space and finally computation of mean exponents and rotation numbers, the stochastic equivalents of the real and imaginary parts of eigenvalues, by using ergodic arguments that allow passing from time to space averages. The second is an expansion technique based on a perturbation analysis of the generator that defines the diffusion. As an alternative or compliment to mean stability we discuss furthermore second mean stabilization and a linear algebraic technique with roots in control theory for calculating second mean exponents.
Le informazioni nella sezione "Riassunto" possono far riferimento a edizioni diverse di questo titolo.
EUR 9,70 per la spedizione da Germania a Italia
Destinazione, tempi e costiDa: moluna, Greven, Germania
Condizione: New. Codice articolo 5416981
Quantità: Più di 20 disponibili
Da: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germania
Taschenbuch. Condizione: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -This work tries to address the problem of assessing the long term dynamics of control systems described by linear, stochastic, differential equations upon application of high gain, proportional, output feedback. Stability of such stochastic systems is characterized by moment exponents and rotation numbers. We present two analytical techniques to determine mean or else almost sure stability and rotation in state space. The first is projection onto the unit sphere, derivation of the associated Fokker-Planck equation on projective space and finally computation of mean exponents and rotation numbers, the stochastic equivalents of the real and imaginary parts of eigenvalues, by using ergodic arguments that allow passing from time to space averages. The second is an expansion technique based on a perturbation analysis of the generator that defines the diffusion. As an alternative or compliment to mean stability we discuss furthermore second mean stabilization and a linear algebraic technique with roots in control theory for calculating second mean exponents. 156 pp. Englisch. Codice articolo 9783838366531
Quantità: 2 disponibili
Da: AHA-BUCH GmbH, Einbeck, Germania
Taschenbuch. Condizione: Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - This work tries to address the problem of assessing the long term dynamics of control systems described by linear, stochastic, differential equations upon application of high gain, proportional, output feedback. Stability of such stochastic systems is characterized by moment exponents and rotation numbers. We present two analytical techniques to determine mean or else almost sure stability and rotation in state space. The first is projection onto the unit sphere, derivation of the associated Fokker-Planck equation on projective space and finally computation of mean exponents and rotation numbers, the stochastic equivalents of the real and imaginary parts of eigenvalues, by using ergodic arguments that allow passing from time to space averages. The second is an expansion technique based on a perturbation analysis of the generator that defines the diffusion. As an alternative or compliment to mean stability we discuss furthermore second mean stabilization and a linear algebraic technique with roots in control theory for calculating second mean exponents. Codice articolo 9783838366531
Quantità: 1 disponibili
Da: buchversandmimpf2000, Emtmannsberg, BAYE, Germania
Taschenbuch. Condizione: Neu. Neuware -This work tries to address the problem of assessing the long term dynamics of control systems described by linear, stochastic, differential equations upon application of high gain, proportional, output feedback. Stability of such stochastic systems is characterized by moment exponents and rotation numbers. We present two analytical techniques to determine mean or else almost sure stability and rotation in state space. The first is projection onto the unit sphere, derivation of the associated Fokker-Planck equation on projective space and finally computation of mean exponents and rotation numbers, the stochastic equivalents of the real and imaginary parts of eigenvalues, by using ergodic arguments that allow passing from time to space averages. The second is an expansion technique based on a perturbation analysis of the generator that defines the diffusion. As an alternative or compliment to mean stability we discuss furthermore second mean stabilization and a linear algebraic technique with roots in control theory for calculating second mean exponents.Books on Demand GmbH, Überseering 33, 22297 Hamburg 156 pp. Englisch. Codice articolo 9783838366531
Quantità: 2 disponibili