Random search methods are implemented to solve the wide variety of the large-scale discrete optimization problems when the implementation of the exact solution approaches is impossible due to large computational demands. Initially designed for unconstrained optimization, the variant probabilities method allows us to find the approximate solution of pseudo-Boolean optimization problems with constraints. Although, in case of the large-scale problems, the computational demands are also very high and the precision of the result depends on the spent time. The rapid development of the parallel processor systems and clusters allows to reduce significantly the time spent to find the acceptable solution with speed-up close to ideal. In this paper, we consider an approach to the parallelizing of the algorithms realizing the variant probability method with adaptation and partial rollback procedure for constrained pseudo-Boolean optimization problems. Existing optimization algorithms are adapted for the systems with shared memory (OpenMP) and cluster systems (MPI library). The parallel efficiency is estimated for the large-scale non-linear pseudo-Boolean optimization problems.
Le informazioni nella sezione "Riassunto" possono far riferimento a edizioni diverse di questo titolo.
Lev Alexaksandrovich Kazakovtsev, Ph.D. in Engineering, Associate Professor of the Institute of Management and Informatics of the Krasnoyarsk State Agrarian University.
Le informazioni nella sezione "Su questo libro" possono far riferimento a edizioni diverse di questo titolo.
Da: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germania
Taschenbuch. Condizione: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Random search methods are implemented to solve the wide variety of the large-scale discrete optimization problems when the implementation of the exact solution approaches is impossible due to large computational demands. Initially designed for unconstrained optimization, the variant probabilities method allows us to find the approximate solution of pseudo-Boolean optimization problems with constraints. Although, in case of the large-scale problems, the computational demands are also very high and the precision of the result depends on the spent time. The rapid development of the parallel processor systems and clusters allows to reduce significantly the time spent to find the acceptable solution with speed-up close to ideal. In this paper, we consider an approach to the parallelizing of the algorithms realizing the variant probability method with adaptation and partial rollback procedure for constrained pseudo-Boolean optimization problems. Existing optimization algorithms are adapted for the systems with shared memory (OpenMP) and cluster systems (MPI library). The parallel efficiency is estimated for the large-scale non-linear pseudo-Boolean optimization problems. 60 pp. Englisch. Codice articolo 9783843317214
Quantità: 2 disponibili
Da: moluna, Greven, Germania
Condizione: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Autor/Autorin: Kazakovtsev LevLev Alexaksandrovich Kazakovtsev, Ph.D. in Engineering, Associate Professor of the Institute of Management and Informatics of the Krasnoyarsk State Agrarian University.Random search methods are implemented to solve. Codice articolo 5464900
Quantità: Più di 20 disponibili
Da: buchversandmimpf2000, Emtmannsberg, BAYE, Germania
Taschenbuch. Condizione: Neu. Neuware -Random search methods are implemented to solve the wide variety of the large-scale discrete optimization problems when the implementation of the exact solution approaches is impossible due to large computational demands. Initially designed for unconstrained optimization, the variant probabilities method allows us to find the approximate solution of pseudo-Boolean optimization problems with constraints. Although, in case of the large-scale problems, the computational demands are also very high and the precision of the result depends on the spent time. The rapid development of the parallel processor systems and clusters allows to reduce significantly the time spent to find the acceptable solution with speed-up close to ideal. In this paper, we consider an approach to the parallelizing of the algorithms realizing the variant probability method with adaptation and partial rollback procedure for constrained pseudo-Boolean optimization problems. Existing optimization algorithms are adapted for the systems with shared memory (OpenMP) and cluster systems (MPI library). The parallel efficiency is estimated for the large-scale non-linear pseudo-Boolean optimization problems.Books on Demand GmbH, Überseering 33, 22297 Hamburg 60 pp. Englisch. Codice articolo 9783843317214
Quantità: 2 disponibili
Da: AHA-BUCH GmbH, Einbeck, Germania
Taschenbuch. Condizione: Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - Random search methods are implemented to solve the wide variety of the large-scale discrete optimization problems when the implementation of the exact solution approaches is impossible due to large computational demands. Initially designed for unconstrained optimization, the variant probabilities method allows us to find the approximate solution of pseudo-Boolean optimization problems with constraints. Although, in case of the large-scale problems, the computational demands are also very high and the precision of the result depends on the spent time. The rapid development of the parallel processor systems and clusters allows to reduce significantly the time spent to find the acceptable solution with speed-up close to ideal. In this paper, we consider an approach to the parallelizing of the algorithms realizing the variant probability method with adaptation and partial rollback procedure for constrained pseudo-Boolean optimization problems. Existing optimization algorithms are adapted for the systems with shared memory (OpenMP) and cluster systems (MPI library). The parallel efficiency is estimated for the large-scale non-linear pseudo-Boolean optimization problems. Codice articolo 9783843317214
Quantità: 1 disponibili
Da: preigu, Osnabrück, Germania
Taschenbuch. Condizione: Neu. Parallel Random Search Algorithm | Of Constrained Pseudo-Boolean Optimization for Large-scale Problems | Lev Kazakovtsev | Taschenbuch | Englisch | 2011 | LAP LAMBERT Academic Publishing | EAN 9783843317214 | Verantwortliche Person für die EU: preigu GmbH & Co. KG, Lengericher Landstr. 19, 49078 Osnabrück, mail[at]preigu[dot]de | Anbieter: preigu. Codice articolo 106794211
Quantità: 5 disponibili
Da: Mispah books, Redhill, SURRE, Regno Unito
Paperback. Condizione: Like New. LIKE NEW. SHIPS FROM MULTIPLE LOCATIONS. book. Codice articolo ERICA77338433172166
Quantità: 1 disponibili