The rate of reduction of iron ore-graphite composite pellets under inert and reducing atmospheres has been investigated in a tailor made thermo-gravimetric packed-bed reactor. A very low overall apparent activation energy estimated from experimental data indicates that the reduction is not chemical kinetics controlled. A kinetic model has been developed to quantify the temporal evolution of different iron oxide phases and metallic iron. The rate-dependent parameters (frequency factors and activation energy) have been estimated from experimental data by applying an optimization tool (Genetic Algorithm). The predicted phases at various degrees of reduction were verified by X-ray diffraction and metallographic investigation. A simplified thermal model has also been developed to show the role of heat transfer on the kinetics of the reduction process under inert atmosphere. The reduction kinetics of the composite pellets in the packed bed under reactive atmosphere is not heat transfer controlled and might possibly be controlled by CO-gas mass transfer through the pellets.
Le informazioni nella sezione "Riassunto" possono far riferimento a edizioni diverse di questo titolo.
Dr. Golap Mohammad Chowdhury; Deputy Manager, Iron & Sinter, Research & Develpoment Centre for Iron & Steel,SAIL,Ranchi,India. Dr. Gour Gopal Roy; Professor, Dept. of Metallurical & Materials Engg., IIT, Kharagpur, India. Dr. Sanat Kumar Roy; Professor & HoD, Dept. of Metallurical & Materials Engg., IIT, Kharagpur, India.
Dr. Golap Mohammad Chowdhury; Deputy Manager, Iron & Sinter, Research & Develpoment Centre for Iron & Steel,SAIL,Ranchi,India. Dr. Gour Gopal Roy; Professor, Dept. of Metallurical & Materials Engg., IIT, Kharagpur, India. Dr. Sanat Kumar Roy; Professor & HoD, Dept. of Metallurical & Materials Engg., IIT, Kharagpur, India.
Dr. Golap Mohammad Chowdhury; Deputy Manager, Iron & Sinter, Research & Develpoment Centre for Iron & Steel,SAIL,Ranchi,India. Dr. Gour Gopal Roy; Professor, Dept. of Metallurical & Materials Engg., IIT, Kharagpur, India. Dr. Sanat Kumar Roy; Professor & HoD, Dept. of Metallurical & Materials Engg., IIT, Kharagpur, India.
Le informazioni nella sezione "Su questo libro" possono far riferimento a edizioni diverse di questo titolo.
EUR 29,27 per la spedizione da Regno Unito a Italia
Destinazione, tempi e costiEUR 9,70 per la spedizione da Germania a Italia
Destinazione, tempi e costiDa: moluna, Greven, Germania
Condizione: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Autor/Autorin: Chowdhury Dr. Golap MohammadDr. Golap Mohammad Chowdhury Deputy Manager, Iron & Sinter, Research & Develpoment Centre for Iron & Steel,SAIL,Ranchi,India. Dr. Gour Gopal Roy Professor, Dept. of Metallurical & Material. Codice articolo 5465762
Quantità: Più di 20 disponibili
Da: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germania
Taschenbuch. Condizione: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -The rate of reduction of iron ore-graphite composite pellets under inert and reducing atmospheres has been investigated in a tailor made thermo-gravimetric packed-bed reactor. A very low overall apparent activation energy estimated from experimental data indicates that the reduction is not chemical kinetics controlled. A kinetic model has been developed to quantify the temporal evolution of different iron oxide phases and metallic iron. The rate-dependent parameters (frequency factors and activation energy) have been estimated from experimental data by applying an optimization tool (Genetic Algorithm). The predicted phases at various degrees of reduction were verified by X-ray diffraction and metallographic investigation. A simplified thermal model has also been developed to show the role of heat transfer on the kinetics of the reduction process under inert atmosphere. The reduction kinetics of the composite pellets in the packed bed under reactive atmosphere is not heat transfer controlled and might possibly be controlled by CO-gas mass transfer through the pellets. 112 pp. Englisch. Codice articolo 9783843357821
Quantità: 2 disponibili
Da: AHA-BUCH GmbH, Einbeck, Germania
Taschenbuch. Condizione: Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - The rate of reduction of iron ore-graphite composite pellets under inert and reducing atmospheres has been investigated in a tailor made thermo-gravimetric packed-bed reactor. A very low overall apparent activation energy estimated from experimental data indicates that the reduction is not chemical kinetics controlled. A kinetic model has been developed to quantify the temporal evolution of different iron oxide phases and metallic iron. The rate-dependent parameters (frequency factors and activation energy) have been estimated from experimental data by applying an optimization tool (Genetic Algorithm). The predicted phases at various degrees of reduction were verified by X-ray diffraction and metallographic investigation. A simplified thermal model has also been developed to show the role of heat transfer on the kinetics of the reduction process under inert atmosphere. The reduction kinetics of the composite pellets in the packed bed under reactive atmosphere is not heat transfer controlled and might possibly be controlled by CO-gas mass transfer through the pellets. Codice articolo 9783843357821
Quantità: 1 disponibili
Da: buchversandmimpf2000, Emtmannsberg, BAYE, Germania
Taschenbuch. Condizione: Neu. Neuware -The rate of reduction of iron ore-graphite composite pellets under inert and reducing atmospheres has been investigated in a tailor made thermo-gravimetric packed-bed reactor. A very low overall apparent activation energy estimated from experimental data indicates that the reduction is not chemical kinetics controlled. A kinetic model has been developed to quantify the temporal evolution of different iron oxide phases and metallic iron. The rate-dependent parameters (frequency factors and activation energy) have been estimated from experimental data by applying an optimization tool (Genetic Algorithm). The predicted phases at various degrees of reduction were verified by X-ray diffraction and metallographic investigation. A simplified thermal model has also been developed to show the role of heat transfer on the kinetics of the reduction process under inert atmosphere. The reduction kinetics of the composite pellets in the packed bed under reactive atmosphere is not heat transfer controlled and might possibly be controlled by CO-gas mass transfer through the pellets.Books on Demand GmbH, Überseering 33, 22297 Hamburg 112 pp. Englisch. Codice articolo 9783843357821
Quantità: 2 disponibili
Da: Mispah books, Redhill, SURRE, Regno Unito
Paperback. Condizione: Like New. Like New. book. Codice articolo ERICA773384335782X6
Quantità: 1 disponibili