Clustering is considered as widely used data mining practices. Clustering is the technique of dividing entire dataset in certain clusters created on the comparable characteristics of the instances. On the foundation of the likeness between the instances of data, grouping or clustering the instances of the large database regardless of its size is considered as significant chunk of data mining. There are plentiful approaches of clustering but this book mainly focuses on improving k-Means clustering algorithm. This method clusters the input dataset in quantified number (k) of groups. This method is verified to be very efficient when while dealing with small data, but for huge data, it fails in time complexity; it takes time more than usual. This work mainly aims comparison of k-means clustering scheme with ranking method to speed up the comprehensive running time for k-Means clustering algorithm. The experimental results clearly confirms that the new technique is more time efficient than the old-style k-Means clustering method.
Le informazioni nella sezione "Riassunto" possono far riferimento a edizioni diverse di questo titolo.
EUR 9,70 per la spedizione da Germania a Italia
Destinazione, tempi e costiDa: moluna, Greven, Germania
Condizione: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Autor/Autorin: Patel SwatiSwati is a keen researcher in various fields like data mining, internet security, cloud Computing and Image Processing. She holds master s degree in computer engineering from North Maharashtra University, Jalgaon, India wi. Codice articolo 300820600
Quantità: Più di 20 disponibili
Da: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germania
Taschenbuch. Condizione: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Clustering is considered as widely used data mining practices. Clustering is the technique of dividing entire dataset in certain clusters created on the comparable characteristics of the instances. On the foundation of the likeness between the instances of data, grouping or clustering the instances of the large database regardless of its size is considered as significant chunk of data mining. There are plentiful approaches of clustering but this book mainly focuses on improving k-Means clustering algorithm. This method clusters the input dataset in quantified number (k) of groups. This method is verified to be very efficient when while dealing with small data, but for huge data, it fails in time complexity; it takes time more than usual. This work mainly aims comparison of k-means clustering scheme with ranking method to speed up the comprehensive running time for k-Means clustering algorithm. The experimental results clearly confirms that the new technique is more time efficient than the old-style k-Means clustering method. 68 pp. Englisch. Codice articolo 9786138838197
Quantità: 2 disponibili
Da: buchversandmimpf2000, Emtmannsberg, BAYE, Germania
Taschenbuch. Condizione: Neu. Neuware -Clustering is considered as widely used data mining practices. Clustering is the technique of dividing entire dataset in certain clusters created on the comparable characteristics of the instances. On the foundation of the likeness between the instances of data, grouping or clustering the instances of the large database regardless of its size is considered as significant chunk of data mining. There are plentiful approaches of clustering but this book mainly focuses on improving k-Means clustering algorithm. This method clusters the input dataset in quantified number (k) of groups. This method is verified to be very efficient when while dealing with small data, but for huge data, it fails in time complexity; it takes time more than usual. This work mainly aims comparison of k-means clustering scheme with ranking method to speed up the comprehensive running time for k-Means clustering algorithm. The experimental results clearly confirms that the new technique is more time efficient than the old-style k-Means clustering method.VDM Verlag, Dudweiler Landstraße 99, 66123 Saarbrücken 68 pp. Englisch. Codice articolo 9786138838197
Quantità: 2 disponibili
Da: AHA-BUCH GmbH, Einbeck, Germania
Taschenbuch. Condizione: Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - Clustering is considered as widely used data mining practices. Clustering is the technique of dividing entire dataset in certain clusters created on the comparable characteristics of the instances. On the foundation of the likeness between the instances of data, grouping or clustering the instances of the large database regardless of its size is considered as significant chunk of data mining. There are plentiful approaches of clustering but this book mainly focuses on improving k-Means clustering algorithm. This method clusters the input dataset in quantified number (k) of groups. This method is verified to be very efficient when while dealing with small data, but for huge data, it fails in time complexity; it takes time more than usual. This work mainly aims comparison of k-means clustering scheme with ranking method to speed up the comprehensive running time for k-Means clustering algorithm. The experimental results clearly confirms that the new technique is more time efficient than the old-style k-Means clustering method. Codice articolo 9786138838197
Quantità: 1 disponibili
Da: Books Puddle, New York, NY, U.S.A.
Condizione: New. Codice articolo 26400856959
Quantità: 4 disponibili
Da: Majestic Books, Hounslow, Regno Unito
Condizione: New. Print on Demand. Codice articolo 395520160
Quantità: 4 disponibili
Da: Biblios, Frankfurt am main, HESSE, Germania
Condizione: New. PRINT ON DEMAND. Codice articolo 18400856949
Quantità: 4 disponibili
Da: Revaluation Books, Exeter, Regno Unito
Paperback. Condizione: Brand New. 68 pages. 8.66x5.91x0.16 inches. In Stock. Codice articolo zk613883819X
Quantità: 1 disponibili