Articoli correlati a Short-term Rainfall Forecasting using ANNs and ANFIS...

Short-term Rainfall Forecasting using ANNs and ANFIS Models: Artificial Neural Networks and Adaptive Neuro-Fuzzy Inference System - Brossura

 
9786202011600: Short-term Rainfall Forecasting using ANNs and ANFIS Models: Artificial Neural Networks and Adaptive Neuro-Fuzzy Inference System

Sinossi

Rainfall forecasting still represents an extremely important issue in hydrology. On the other hand, rainfall is one of the most complicated effective hydrologic processes in runoff prediction. In the present study an attempt has been made to develop artificial neural networks (ANN) and adaptive neuro-fuzzy inference system (ANFIS) models for forecasting of daily rainfall for monsoon period of Junagadh, Gujarat, India. The data of period (1st June to 30th October) of years 1979-1981, 1984-1989 and 1991-2007 were used to train the models and data of years 2008-2011 were used for test the models. The sensitivity analysis was used to identify the most important parameter for rainfall prediction. In ANN model, back-propagation algorithm and sigmoid activation function used to train and test the models while in ANFIS models, gaussian and generalized bell membership function are used. It was found from the study that the performance of the ANN double hidden layer model with four input parameters is better than the ANFIS model. The sensitivity analysis indicated that the most important input parameter besides rainfall itself is the vapour pressure in rainfall forecasting.

Le informazioni nella sezione "Riassunto" possono far riferimento a edizioni diverse di questo titolo.

EUR 9,70 per la spedizione da Germania a Italia

Destinazione, tempi e costi

Risultati della ricerca per Short-term Rainfall Forecasting using ANNs and ANFIS...

Immagini fornite dal venditore

Pradip Kyada|Pravendra Kumar|Manoj Sojitra
ISBN 10: 6202011602 ISBN 13: 9786202011600
Nuovo Brossura
Print on Demand

Da: moluna, Greven, Germania

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Autor/Autorin: Kyada PradipThe author, Pradip M. Kyada has completed his B.Tech (Agri. Engg.) in 2011 from College of Agri. Engg. and Tech., J.A.U., Junagadh (Gujarat). He also obtained M. Tech. (Soil and Water Cons. Engg.) degree in 2013 from GBPU. Codice articolo 385901506

Contatta il venditore

Compra nuovo

EUR 41,71
Convertire valuta
Spese di spedizione: EUR 9,70
Da: Germania a: Italia
Destinazione, tempi e costi

Quantità: Più di 20 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

Pradip Kyada
ISBN 10: 6202011602 ISBN 13: 9786202011600
Nuovo Taschenbuch
Print on Demand

Da: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germania

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Taschenbuch. Condizione: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Rainfall forecasting still represents an extremely important issue in hydrology. On the other hand, rainfall is one of the most complicated effective hydrologic processes in runoff prediction. In the present study an attempt has been made to develop artificial neural networks (ANN) and adaptive neuro-fuzzy inference system (ANFIS) models for forecasting of daily rainfall for monsoon period of Junagadh, Gujarat, India. The data of period (1st June to 30th October) of years 1979-1981, 1984-1989 and 1991-2007 were used to train the models and data of years 2008-2011 were used for test the models. The sensitivity analysis was used to identify the most important parameter for rainfall prediction. In ANN model, back-propagation algorithm and sigmoid activation function used to train and test the models while in ANFIS models, gaussian and generalized bell membership function are used. It was found from the study that the performance of the ANN double hidden layer model with four input parameters is better than the ANFIS model. The sensitivity analysis indicated that the most important input parameter besides rainfall itself is the vapour pressure in rainfall forecasting. 100 pp. Englisch. Codice articolo 9786202011600

Contatta il venditore

Compra nuovo

EUR 49,90
Convertire valuta
Spese di spedizione: EUR 11,00
Da: Germania a: Italia
Destinazione, tempi e costi

Quantità: 2 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

Pradip Kyada
ISBN 10: 6202011602 ISBN 13: 9786202011600
Nuovo Taschenbuch

Da: buchversandmimpf2000, Emtmannsberg, BAYE, Germania

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Taschenbuch. Condizione: Neu. Neuware -Rainfall forecasting still represents an extremely important issue in hydrology. On the other hand, rainfall is one of the most complicated effective hydrologic processes in runoff prediction. In the present study an attempt has been made to develop artificial neural networks (ANN) and adaptive neuro-fuzzy inference system (ANFIS) models for forecasting of daily rainfall for monsoon period of Junagadh, Gujarat, India. The data of period (1st June to 30th October) of years 1979-1981, 1984-1989 and 1991-2007 were used to train the models and data of years 2008-2011 were used for test the models. The sensitivity analysis was used to identify the most important parameter for rainfall prediction. In ANN model, back-propagation algorithm and sigmoid activation function used to train and test the models while in ANFIS models, gaussian and generalized bell membership function are used. It was found from the study that the performance of the ANN double hidden layer model with four input parameters is better than the ANFIS model. The sensitivity analysis indicated that the most important input parameter besides rainfall itself is the vapour pressure in rainfall forecasting.Books on Demand GmbH, Überseering 33, 22297 Hamburg 100 pp. Englisch. Codice articolo 9786202011600

Contatta il venditore

Compra nuovo

EUR 49,90
Convertire valuta
Spese di spedizione: EUR 15,00
Da: Germania a: Italia
Destinazione, tempi e costi

Quantità: 2 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

Pradip Kyada
ISBN 10: 6202011602 ISBN 13: 9786202011600
Nuovo Taschenbuch
Print on Demand

Da: AHA-BUCH GmbH, Einbeck, Germania

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Taschenbuch. Condizione: Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - Rainfall forecasting still represents an extremely important issue in hydrology. On the other hand, rainfall is one of the most complicated effective hydrologic processes in runoff prediction. In the present study an attempt has been made to develop artificial neural networks (ANN) and adaptive neuro-fuzzy inference system (ANFIS) models for forecasting of daily rainfall for monsoon period of Junagadh, Gujarat, India. The data of period (1st June to 30th October) of years 1979-1981, 1984-1989 and 1991-2007 were used to train the models and data of years 2008-2011 were used for test the models. The sensitivity analysis was used to identify the most important parameter for rainfall prediction. In ANN model, back-propagation algorithm and sigmoid activation function used to train and test the models while in ANFIS models, gaussian and generalized bell membership function are used. It was found from the study that the performance of the ANN double hidden layer model with four input parameters is better than the ANFIS model. The sensitivity analysis indicated that the most important input parameter besides rainfall itself is the vapour pressure in rainfall forecasting. Codice articolo 9786202011600

Contatta il venditore

Compra nuovo

EUR 50,50
Convertire valuta
Spese di spedizione: EUR 14,99
Da: Germania a: Italia
Destinazione, tempi e costi

Quantità: 1 disponibili

Aggiungi al carrello

Foto dell'editore

Kyada, Pradip/ Kumar, Pravendra/ Sojitra, Manoj
ISBN 10: 6202011602 ISBN 13: 9786202011600
Nuovo Paperback

Da: Revaluation Books, Exeter, Regno Unito

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Paperback. Condizione: Brand New. 100 pages. 8.66x5.91x0.23 inches. In Stock. Codice articolo zk6202011602

Contatta il venditore

Compra nuovo

EUR 87,02
Convertire valuta
Spese di spedizione: EUR 11,43
Da: Regno Unito a: Italia
Destinazione, tempi e costi

Quantità: 1 disponibili

Aggiungi al carrello