This book covers the contents of my Ph.D work. The despeckling concept of synthetic aperture radar (SAR) imagery and object recognition and classification of the SAR imagery dataset has been covered. The various available literature with their pros and cons and tried to overcome them with a new approach by utilizing some optimization methods has been explained. The SAR image despeckling process has been covered by introducing a new framework in which I have applied a fruit fly optimization algorithm to enhance the execution time and also improved the smoothness of the images without losing any image information. Different machine learning algorithms have been used to compare the classification result based on original SAR imagery and despeckled SAR imagery. Experimental results depict found the improved performance in terms of different parameters.
Le informazioni nella sezione "Riassunto" possono far riferimento a edizioni diverse di questo titolo.
Da: PBShop.store US, Wood Dale, IL, U.S.A.
PAP. Condizione: New. New Book. Shipped from UK. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000. Codice articolo L0-9786206157113
Quantità: Più di 20 disponibili
Da: PBShop.store UK, Fairford, GLOS, Regno Unito
PAP. Condizione: New. New Book. Delivered from our UK warehouse in 4 to 14 business days. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000. Codice articolo L0-9786206157113
Quantità: Più di 20 disponibili
Da: California Books, Miami, FL, U.S.A.
Condizione: New. Codice articolo I-9786206157113
Quantità: Più di 20 disponibili
Da: Ria Christie Collections, Uxbridge, Regno Unito
Condizione: New. In. Codice articolo ria9786206157113_new
Quantità: Più di 20 disponibili
Da: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germania
Taschenbuch. Condizione: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -This book covers the contents of my Ph.D work. The despeckling concept of synthetic aperture radar (SAR) imagery and object recognition and classification of the SAR imagery dataset has been covered. The various available literature with their pros and cons and tried to overcome them with a new approach by utilizing some optimization methods has been explained. The SAR image despeckling process has been covered by introducing a new framework in which I have applied a fruit fly optimization algorithm to enhance the execution time and also improved the smoothness of the images without losing any image information. Different machine learning algorithms have been used to compare the classification result based on original SAR imagery and despeckled SAR imagery. Experimental results depict found the improved performance in terms of different parameters. 156 pp. Englisch. Codice articolo 9786206157113
Quantità: 2 disponibili
Da: moluna, Greven, Germania
Kartoniert / Broschiert. Condizione: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Autor/Autorin: Kumar BibekBibek Kumar, PhD in Computer Science Engineering Engineering (DIT University Dehradun), MTech from NIT Hamirpur, B.Tech from Galgotia College of Engineering and Technology Greater Noida. Bibek Kumar has over 15 years of te. Codice articolo 853294626
Quantità: Più di 20 disponibili
Da: Books Puddle, New York, NY, U.S.A.
Condizione: New. Codice articolo 26397359607
Quantità: 4 disponibili
Da: Majestic Books, Hounslow, Regno Unito
Condizione: New. Print on Demand. Codice articolo 400066088
Quantità: 4 disponibili
Da: Biblios, Frankfurt am main, HESSE, Germania
Condizione: New. PRINT ON DEMAND. Codice articolo 18397359613
Quantità: 4 disponibili
Da: preigu, Osnabrück, Germania
Taschenbuch. Condizione: Neu. Despeckling & Object Recognition in Synthetic Aperture RADAR Imagery | A New Approach | Bibek Kumar (u. a.) | Taschenbuch | Englisch | 2023 | LAP LAMBERT Academic Publishing | EAN 9786206157113 | Verantwortliche Person für die EU: preigu GmbH & Co. KG, Lengericher Landstr. 19, 49078 Osnabrück, mail[at]preigu[dot]de | Anbieter: preigu. Codice articolo 126812208
Quantità: 5 disponibili