In this text, we introduce the basic concepts for the numerical modelling of partial differential equations. We consider the classical elliptic, parabolic and hyperbolic linear equations, but also the diffusion, transport, and Navier-Stokes equations, as well as equations representing conservation laws, saddle-point problems and optimal control problems. Furthermore, we provide numerous physical examples which underline such equations. In particular, we discuss the algorithmic and computer implementation aspects and provide a number of easy-to-use programs.
The text does not require any previous advanced mathematical knowledge of partial differential equations: the absolutely essential concepts are reported in a preliminary chapter. It is therefore suitable for students of bachelor and master courses in scientific disciplines, and recommendable to those researchers in the academic and extra-academic domain who want to approach this interesting branch of applied mathematics.
Le informazioni nella sezione "Riassunto" possono far riferimento a edizioni diverse di questo titolo.
The Author is Professor and Director of the Chair of Modelling and Scientific Computing (CMCS) at the Institute of Analysis and Scientific Computing of EPFL, Lausanne (Switzerland), since 1998, Professor of Numerical Analysis at the Politecnico di Milano (Italy) since 1989, and Scientific Director of MOX, since 2002. Author of 22 books published with Springer, and of about 200 papers published in refereed international Journals, Conference Proceedings and Magazines, Alfio Quarteroni is actually one of the strongest and reliable mathematicians in the world in the field of Modelling and SC.
In this text, we introduce the basic concepts for the numerical modelling of partial differential equations. We consider the classical elliptic, parabolic and hyperbolic linear equations, but also the diffusion, transport, and Navier-Stokes equations, as well as equations representing conservation laws, saddle-point problems and optimal control problems. Furthermore, we provide numerous physical examples which underline such equations. We then analyze numerical solution methods based on finite elements, finite differences, finite volumes, spectral methods and domain decomposition methods, and reduced basis methods.
In particular, we discuss the algorithmic and computer implementation aspects and provide a number of easy-to-use programs.
The text does not require any previous advanced mathematical knowledge of partial differential equations: the absolutely essential concepts are reported in a preliminary chapter. It is therefore suitable for students of bachelor and master courses in scientific disciplines, and recommendable to those researchers in the academic and extra-academic domain who want to approach this interesting branch of applied mathematics.
Le informazioni nella sezione "Su questo libro" possono far riferimento a edizioni diverse di questo titolo.
EUR 10,00 per la spedizione da Germania a Italia
Destinazione, tempi e costiDa: Universitätsbuchhandlung Herta Hold GmbH, Berlin, Germania
XVI, 601 p. Hardcover. Versand aus Deutschland / We dispatch from Germany via Air Mail. Einband bestoßen, daher Mängelexemplar gestempelt, sonst sehr guter Zustand. Imperfect copy due to slightly bumped cover, apart from this in very good condition. Stamped. Stamped/gestempelt. Sprache: Englisch. Codice articolo 5107DB
Quantità: 7 disponibili
Da: Antiquariat Bader Tübingen, Tübingen, Germania
XVI, 601 Seiten mit Abbildungen und graphischen Darstellungen. Gutes Exemplar. Sprache: Englisch Gewicht in Gramm: 1400 Gr.-8vo. Hardcover. - (= MS & A, Volume 2). Codice articolo 73681
Quantità: 1 disponibili