The book is devoted to the theory of pairs of compact convex sets and in particular to the problem of finding different types of minimal representants of a pair of nonempty compact convex subsets of a locally convex vector space in the sense of the Rådström-Hörmander Theory. Minimal pairs of compact convex sets arise naturally in different fields of mathematics, as for instance in non-smooth analysis, set-valued analysis and in the field of combinatorial convexity. In the first three chapters of the book the basic facts about convexity, mixed volumes and the Rådström-Hörmander lattice are presented. Then, a comprehensive theory on inclusion-minimal representants of pairs of compact convex sets is given. Special attention is given to the two-dimensional case, where the minimal pairs are uniquely determined up to translations. This fact is not true in higher dimensional spaces and leads to a beautiful theory on the mutual interactions between minimality under constraints, separation and decomposition of convex sets, convexificators and invariants of minimal pairs.
Le informazioni nella sezione "Riassunto" possono far riferimento a edizioni diverse di questo titolo.
Preface. I: Convexity. 1. Convex Sets and Sublinearity. 2. Topological Vector Spaces. 3. Compact Convex Sets. II: Minimal Pairs. 4. Minimal Pairs of Convex Sets. 5. The Cardinality of Minimal Pairs. 6. Minimality under Constraints. 7. Symmetries. 8. Decompositions. 9. Invariants. 10. Applications. III: Semigroups. 11. Fractions. 12. Piecewise Linear Functions. Open Questions. List of Symbols. Index. Bibliography.
Le informazioni nella sezione "Su questo libro" possono far riferimento a edizioni diverse di questo titolo.
EUR 29,31 per la spedizione da Regno Unito a Italia
Destinazione, tempi e costiEUR 9,70 per la spedizione da Germania a Italia
Destinazione, tempi e costiDa: moluna, Greven, Germania
Condizione: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Preface. I: Convexity. 1. Convex Sets and Sublinearity. 2. Topological Vector Spaces. 3. Compact Convex Sets. II: Minimal Pairs. 4. Minimal Pairs of Convex Sets. 5. The Cardinality of Minimal Pairs. 6. Minimality under Constraints. 7. Symmetries. 8. Decompo. Codice articolo 5820001
Quantità: Più di 20 disponibili
Da: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germania
Taschenbuch. Condizione: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Pairs of compact convex sets arise in the quasidifferential calculus of V.F. Demyanov and A.M. Rubinov as sub- and superdifferentials of quasidifferen tiable functions (see [26]) and in the formulas for the numerical evaluation of the Aumann-Integral which were recently introduced in a series of papers by R. Baier and F. Lempio (see [4], [5], [10] and [9]) and R. Baier and E.M. Farkhi [6], [7], [8]. In the field of combinatorial convexity G. Ewald et al. [36] used an interesting construction called virtual polytope, which can also be represented as a pair of polytopes for the calculation of the combinatorial Picard group of a fan. Since in all mentioned cases the pairs of compact con vex sets are not uniquely determined, minimal representations are of special to the existence of minimal pairs of compact importance. A problem related convex sets is the existence of reduced pairs of convex bodies, which has been studied by Chr. Bauer (see [14]). 308 pp. Englisch. Codice articolo 9789048161492
Quantità: 2 disponibili
Da: buchversandmimpf2000, Emtmannsberg, BAYE, Germania
Taschenbuch. Condizione: Neu. This item is printed on demand - Print on Demand Titel. Neuware -Pairs of compact convex sets arise in the quasidifferential calculus of V.F. Demyanov and A.M. Rubinov as sub- and superdifferentials of quasidifferen tiable functions (see [26]) and in the formulas for the numerical evaluation of the Aumann-Integral which were recently introduced in a series of papers by R. Baier and F. Lempio (see [4], [5], [10] and [9]) and R. Baier and E.M. Farkhi [6], [7], [8]. In the field of combinatorial convexity G. Ewald et al. [36] used an interesting construction called virtual polytope, which can also be represented as a pair of polytopes for the calculation of the combinatorial Picard group of a fan. Since in all mentioned cases the pairs of compact con vex sets are not uniquely determined, minimal representations are of special to the existence of minimal pairs of compact importance. A problem related convex sets is the existence of reduced pairs of convex bodies, which has been studied by Chr. Bauer (see [14]).Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 308 pp. Englisch. Codice articolo 9789048161492
Quantità: 1 disponibili
Da: GreatBookPrices, Columbia, MD, U.S.A.
Condizione: New. Codice articolo 11874967-n
Quantità: Più di 20 disponibili
Da: Ria Christie Collections, Uxbridge, Regno Unito
Condizione: New. In. Codice articolo ria9789048161492_new
Quantità: Più di 20 disponibili
Da: California Books, Miami, FL, U.S.A.
Condizione: New. Codice articolo I-9789048161492
Quantità: Più di 20 disponibili
Da: AHA-BUCH GmbH, Einbeck, Germania
Taschenbuch. Condizione: Neu. Druck auf Anfrage Neuware - Printed after ordering - Pairs of compact convex sets arise in the quasidifferential calculus of V.F. Demyanov and A.M. Rubinov as sub- and superdifferentials of quasidifferen tiable functions (see [26]) and in the formulas for the numerical evaluation of the Aumann-Integral which were recently introduced in a series of papers by R. Baier and F. Lempio (see [4], [5], [10] and [9]) and R. Baier and E.M. Farkhi [6], [7], [8]. In the field of combinatorial convexity G. Ewald et al. [36] used an interesting construction called virtual polytope, which can also be represented as a pair of polytopes for the calculation of the combinatorial Picard group of a fan. Since in all mentioned cases the pairs of compact con vex sets are not uniquely determined, minimal representations are of special to the existence of minimal pairs of compact importance. A problem related convex sets is the existence of reduced pairs of convex bodies, which has been studied by Chr. Bauer (see [14]). Codice articolo 9789048161492
Quantità: 1 disponibili
Da: GreatBookPricesUK, Woodford Green, Regno Unito
Condizione: New. Codice articolo 11874967-n
Quantità: Più di 20 disponibili
Da: Books Puddle, New York, NY, U.S.A.
Condizione: New. pp. 310. Codice articolo 263093179
Quantità: 4 disponibili
Da: Revaluation Books, Exeter, Regno Unito
Paperback. Condizione: Brand New. 308 pages. 9.25x6.10x0.70 inches. In Stock. Codice articolo x-9048161495
Quantità: 2 disponibili