Geometric Data Analysis (GDA) is the name suggested by P. Suppes (Stanford University) to designate the approach to Multivariate Statistics initiated by Benzécri as Correspondence Analysis, an approach that has become more and more used and appreciated over the years. This book presents the full formalization of GDA in terms of linear algebra - the most original and far-reaching consequential feature of the approach - and shows also how to integrate the standard statistical tools such as Analysis of Variance, including Bayesian methods. Chapter 9, Research Case Studies, is nearly a book in itself; it presents the methodology in action on three extensive applications, one for medicine, one from political science, and one from education (data borrowed from the Stanford computer-based Educational Program for Gifted Youth ). Thus the readership of the book concerns both mathematicians interested in the applications of mathematics, and researchers willing to master an exceptionally powerful approach of statistical data analysis.
Le informazioni nella sezione "Riassunto" possono far riferimento a edizioni diverse di questo titolo.
From the reviews:
"Simply a masterpiece (...) I find this book to be a treasure chest"- Johs Hjellbrekke in the European Sociological Rev.2005; 21: 529-531
"Written in a mathematically rigorous way at a very high scientific level, the book represents an outstanding monograph in the field of multivariate statistics. The book provides a comprehensive presentation of the essentials in approaching multivariational data analysis in geometric terms. The illustrative examples and the exercises ... are welcome and facilitate substantially the understanding of the contents. ... the book proves extremely helpful and informative to a large class of readers, academics, postgraduate students and practitioners from a variety of disciplines." (Luminita State, Zentralblatt MATH, Vol. 1095 (22), 2006)
"The book under review meets the following two requirements: first, it presents in full the formalization of GDA in terms of the structures of linear algebra ... and second, it shows how conventional statistical methods are applicable to structured data analysis ... . The book is accessible to a wide audience of practising scientists. The mathematical framework is carefully explained. It is an important and much needed contribution to the statistical use of geometric ideas in the description and analysis of scientific data." (Wojciech Zielinski, Mathematical Reviews, Issue 2006 e)
"The uniqueness of this work lies in the detailed conceptual framework, and in showing how, where and why statistical inference methods come into play. ... In conclusion, this book constitutes essential background material on Geometric Data Analysis, and, for the seasoned professional, a most valuable source of reference." (Fionn Murtagh, Journal of Classification, Vol. 25, 2008)
- Foreword; Patrick Suppes. Preface. - 1: Overview of Geometric Data Analysis. 1.1. CA of a Historical Data Set. 1.2. The Three Key Ideas of GDA. 1.3. Three Paradigms of GDA. 1.4. Historical Sketch. 1.5. Methodological Strong Points. 1.6. From Descriptive to Inductive Analysis. 1.7. Organization of the Book. - 2: Correspondence Analysis (CA). 2.1. Measure vs. Variable Duality. 2.2. Measure over a Cartesian Product. 2.3. Correspondence Analysis. 2.4. Extensions and Concluding Comments. Exercises. - 3: Euclidean Cloud. 3.1. Basic Statistics. 3.2. Projected Clouds. 3.3. Principle Directions. 3.4. Principle Hyperellipsoids. 3.5. Between and within Clouds. 3.6. Euclidean Classification. 3.7. Matrix Formulas. - 4: Principal Component Analysis (PCA). 4.1. Biweighted PCA. 4.2. Simple PCA. 4.3. Standard PCA. 4.4. General PCA. 4.5. PCA of a Table of Measures. 4.6. Methodology of PCA. - 5: Multiple Correspondence Analysis (MCA). 5.1. Standard MCA. 5.2. Specific MCA. 5.3. Methodology of MCA. 5.4. The Culture Example. Exercises. - 6: Structured Data Analysis. 6.1. Structuring Factors. 6.2. Analysis of Comparisons. 6.3. Additive and Interation Clouds. 6.4. Related Topics. - 7: Stability of a Euclidean Cloud. 7.1. Stability and Grouping. 7.2. Influence of aGroup of Points. 7.3. Change of Metric. 7.4. Influence of a Variable. 7.5. Basic Theorems. - 8: Inductive Data Analysis. 8.1. Influence in Multivariate Statistics. 8.2. Univariate Effects. 8.3. Combinatorial Inference. 8.4. Bayesian Data Analysis. 8.5. Inductive GDA. 8.6. Guidelines for Inductive Analysis. - 9: Research Case Studies. 9.1. Parkinson Study. 9.2. French Political Space. 9.3. EPGY Study. 9.4. About Software. - 10: Mathematical Bases. 10.1. Matrix Operations. 10.2. Finite-dimensional Vector Space. 10.3. Euclidean Vector Space. 10.4. Multidimensional Geometry. 10.5. Spectral Theorem. - Bibliography. - Index. Name Index. Symbol Index. Subject Index.
Le informazioni nella sezione "Su questo libro" possono far riferimento a edizioni diverse di questo titolo.
EUR 29,47 per la spedizione da Regno Unito a Italia
Destinazione, tempi e costiEUR 9,70 per la spedizione da Germania a Italia
Destinazione, tempi e costiQuantità: Più di 20 disponibili
Da: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germania
Taschenbuch. Condizione: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Geometric Data Analysis (GDA) is the name suggested by P. Suppes (Stanford University) to designate the approach to Multivariate Statistics initiated by Benzécri as Correspondence Analysis, an approach that has become more and more used and appreciated over the years. This book presents the full formalization of GDA in terms of linear algebra - the most original and far-reaching consequential feature of the approach - and shows also how to integrate the standard statistical tools such as Analysis of Variance, including Bayesian methods. Chapter 9, Research Case Studies, is nearly a book in itself; it presents the methodology in action on three extensive applications, one for medicine, one from political science, and one from education (data borrowed from the Stanford computer-based Educational Program for Gifted Youth ). Thus the readership of the book concerns both mathematicians interested in the applications of mathematics, and researchers willing to master an exceptionally powerful approach of statistical data analysis. 488 pp. Englisch. Codice articolo 9789048166190
Quantità: 2 disponibili
Da: buchversandmimpf2000, Emtmannsberg, BAYE, Germania
Taschenbuch. Condizione: Neu. Neuware -Geometric Data Analysis (GDA) is the name suggested by P. Suppes (Stanford University) to designate the approach to Multivariate Statistics initiated by Benzécri as Correspondence Analysis, an approach that has become more and more used and appreciated over the years. This book presents the full formalization of GDA in terms of linear algebra - the most original and far-reaching consequential feature of the approach - and shows also how to integrate the standard statistical tools such as Analysis of Variance, including Bayesian methods. Chapter 9, Research Case Studies, is nearly a book in itself; it presents the methodology in action on three extensive applications, one for medicine, one from political science, and one from education (data borrowed from the Stanford computer-based Educational Program for Gifted Youth ). Thus the readership of the book concerns both mathematicians interested in the applications of mathematics, and researchers willing to master an exceptionally powerful approach of statistical data analysis.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 488 pp. Englisch. Codice articolo 9789048166190
Quantità: 2 disponibili
Da: AHA-BUCH GmbH, Einbeck, Germania
Taschenbuch. Condizione: Neu. Druck auf Anfrage Neuware - Printed after ordering - Geometric Data Analysis (GDA) is the name suggested by P. Suppes (Stanford University) to designate the approach to Multivariate Statistics initiated by Benzécri as Correspondence Analysis, an approach that has become more and more used and appreciated over the years. This book presents the full formalization of GDA in terms of linear algebra - the most original and far-reaching consequential feature of the approach - and shows also how to integrate the standard statistical tools such as Analysis of Variance, including Bayesian methods. Chapter 9, Research Case Studies, is nearly a book in itself; it presents the methodology in action on three extensive applications, one for medicine, one from political science, and one from education (data borrowed from the Stanford computer-based Educational Program for Gifted Youth ). Thus the readership of the book concerns both mathematicians interested in the applications of mathematics, and researchers willing to master an exceptionally powerful approach of statistical data analysis. Codice articolo 9789048166190
Quantità: 1 disponibili
Da: Ria Christie Collections, Uxbridge, Regno Unito
Condizione: New. In. Codice articolo ria9789048166190_new
Quantità: Più di 20 disponibili
Da: Books Puddle, New York, NY, U.S.A.
Condizione: New. pp. 488. Codice articolo 263079235
Quantità: 4 disponibili
Da: Majestic Books, Hounslow, Regno Unito
Condizione: New. Print on Demand pp. 488 49:B&W 6.14 x 9.21 in or 234 x 156 mm (Royal 8vo) Perfect Bound on White w/Gloss Lam. Codice articolo 5850012
Quantità: 4 disponibili
Da: Biblios, Frankfurt am main, HESSE, Germania
Condizione: New. PRINT ON DEMAND pp. 488. Codice articolo 183079241
Quantità: 4 disponibili
Da: Revaluation Books, Exeter, Regno Unito
Paperback. Condizione: Brand New. 486 pages. 9.25x6.25x1.10 inches. In Stock. Codice articolo x-9048166195
Quantità: 2 disponibili
Da: Lucky's Textbooks, Dallas, TX, U.S.A.
Condizione: New. Codice articolo ABLIING23Apr0316110337897
Quantità: Più di 20 disponibili