Articoli correlati a Evolutionary Multi-Task Optimization: Foundations and...

Evolutionary Multi-Task Optimization: Foundations and Methodologies - Rilegato

 
9789811956492: Evolutionary Multi-Task Optimization: Foundations and Methodologies

Sinossi

A remarkable facet of the human brain is its ability to manage multiple tasks with apparent simultaneity. Knowledge learned from one task can then be used to enhance problem-solving in other related tasks. In machine learning, the idea of leveraging relevant information across related tasks as inductive biases to enhance learning performance has attracted significant interest. In contrast, attempts to emulate the human brain’s ability to generalize in optimization – particularly in population-based evolutionary algorithms – have received little attention to date.  

Recently, a novel evolutionary search paradigm, Evolutionary Multi-Task (EMT) optimization, has been proposed in the realm of evolutionary computation. In contrast to traditional evolutionary searches, which solve a single task in a single run, evolutionary multi-tasking algorithm conducts searches concurrently on multiple search spaces corresponding to different tasks or optimization problems,each possessing a unique function landscape. By exploiting the latent synergies among distinct problems, the superior search performance of EMT optimization in terms of solution quality and convergence speed has been demonstrated in a variety of continuous, discrete, and hybrid (mixture of continuous and discrete) tasks.  

This book discusses the foundations and methodologies of developing evolutionary multi-tasking algorithms for complex optimization, including in domains characterized by factors such as multiple objectives of interest, high-dimensional search spaces and NP-hardness. 

Le informazioni nella sezione "Riassunto" possono far riferimento a edizioni diverse di questo titolo.

Informazioni sull?autore

Liang Feng is a Professor at the College of Computer Science, Chongqing University, China. His research interests include computational and artificial intelligence, memetic computing, big data optimization and learning, as well as transfer learning and optimization. His research on evolutionary multitasking won the 2019 IEEE Transactions on Evolutionary Computation Outstanding Paper Award. He is an associate editor of the IEEE Computational Intelligence Magazine, IEEE Transactions on Emerging Topics in Computational Intelligence, Memetic Computing, and Cognitive Computation. He is also the founding chair of the IEEE CIS Intelligent Systems Applications Technical Committee Task Force on “Transfer Learning & Transfer Optimization.”

Abhishek Gupta is currently a scientist and technical lead at the Singapore Institute of Manufacturing Technology (SIMTech), Agency for Science, Technology and Research (A*STAR). Over the past 5 years, Dr. Gupta has been working at the intersectionof optimization, neuroevolution and machine learning, with particular focus on theories and algorithms in transfer and multi-task optimization. He is interested in applications in engineering design and scientific computing. He received the 2019 IEEE Transactions on Evolutionary Computation Outstanding Paper Award by the IEEE Computational Intelligence Society (CIS), for his work on evolutionary multi-tasking.  He is an associate editor of the IEEE Transactions on Emerging Topics in Computational Intelligence, and is also the founding chair of the IEEE CIS Emergent Technology Technical Committee (ETTC) Task Force on Multitask Learning and Multitask Optimization.

Kay Chen Tan is a Chair Professor of Computational Intelligence at the Department of Computing, The Hong Kong Polytechnic University. He has published over 300 peer-reviewed articles and seven books. He is currently the Vice-President (Publications) of IEEE Computational Intelligence Society. He has served as the Editor-in-Chief of IEEE Transactions on Evolutionary Computation (2015-2020) and IEEE Computational Intelligence Magazine (2010-2013), and currently serves as the Editorial Board Member of several journals. He has received several IEEE outstanding paper awards, and is currently an IEEE Distinguished Lecturer Program (DLP) speaker and Chief Co-Editor of Springer Book Series on Machine Learning: Foundations, Methodologies, and Applications.

Yew-Soon Ong is a President Chair Professor in Computer Science at Nanyang Technological University (NTU), and serves as Chief Artificial Intelligence Scientist at the Agency for Science, Technology and Research Singapore. At NTU, he serves as co-Director of the Singtel-NTU Cognitive & Artificial Intelligence Joint Lab, and Director of the Data Science and Artificial Intelligence Research Center. His research interest is in machine learning, evolution and optimization. He is founding Editor-in-Chief of the IEEE Transactions on Emerging Topics in Computational Intelligence and serves as associate editor of IEEE Transactions on Neural Network & Learning Systems, IEEE Transactions on Evolutionary Computation, IEEE Transactions on Artificial Intelligence and others. He has received several IEEE outstanding paper awards and was listed as a Thomson Reuters highly cited researcher and among the World's Most Influential Scientific Minds.

Dalla quarta di copertina

A remarkable facet of the human brain is its ability to manage multiple tasks with apparent simultaneity. Knowledge learned from one task can then be used to enhance problem-solving in other related tasks. In machine learning, the idea of leveraging relevant information across related tasks as inductive biases to enhance learning performance has attracted significant interest. In contrast, attempts to emulate the human brain’s ability to generalize in optimization – particularly in population-based evolutionary algorithms – have received little attention to date.  

Recently, a novel evolutionary search paradigm, Evolutionary Multi-Task (EMT) optimization, has been proposed in the realm of evolutionary computation. In contrast to traditional evolutionary searches, which solve a single task in a single run, evolutionary multi-tasking algorithm conducts searches concurrently on multiple search spaces corresponding to different tasks or optimization problems,each possessing a unique function landscape. By exploiting the latent synergies among distinct problems, the superior search performance of EMT optimization in terms of solution quality and convergence speed has been demonstrated in a variety of continuous, discrete, and hybrid (mixture of continuous and discrete) tasks.  

This book discusses the foundations and methodologies of developing evolutionary multi-tasking algorithms for complex optimization, including in domains characterized by factors such as multiple objectives of interest, high-dimensional search spaces and NP-hardness. 

Le informazioni nella sezione "Su questo libro" possono far riferimento a edizioni diverse di questo titolo.

Compra usato

Condizioni: come nuovo
Unread book in perfect condition...
Visualizza questo articolo

EUR 2,26 per la spedizione in U.S.A.

Destinazione, tempi e costi

Altre edizioni note dello stesso titolo

9789811956522: Evolutionary Multi-Task Optimization: Foundations and Methodologies

Edizione in evidenza

ISBN 10:  9811956529 ISBN 13:  9789811956522
Casa editrice: Springer, 2025
Brossura

Risultati della ricerca per Evolutionary Multi-Task Optimization: Foundations and...

Foto dell'editore

Feng, Liang; Gupta, Abhishek; Tan, Kay Chen; Ong, Yew Soon
Editore: Springer, 2023
ISBN 10: 9811956499 ISBN 13: 9789811956492
Nuovo Rilegato

Da: Best Price, Torrance, CA, U.S.A.

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: New. SUPER FAST SHIPPING. Codice articolo 9789811956492

Contatta il venditore

Compra nuovo

EUR 175,44
Convertire valuta
Spese di spedizione: EUR 6,85
In U.S.A.
Destinazione, tempi e costi

Quantità: 1 disponibili

Aggiungi al carrello

Foto dell'editore

Feng, Liang; Gupta, Abhishek; Tan, Kay Chen; Ong, Yew Soon
Editore: Springer, 2023
ISBN 10: 9811956499 ISBN 13: 9789811956492
Nuovo Rilegato

Da: Ria Christie Collections, Uxbridge, Regno Unito

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: New. In. Codice articolo ria9789811956492_new

Contatta il venditore

Compra nuovo

EUR 177,74
Convertire valuta
Spese di spedizione: EUR 13,82
Da: Regno Unito a: U.S.A.
Destinazione, tempi e costi

Quantità: Più di 20 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

Feng, Liang; Gupta, Abhishek; Tan, Kay Chen; Ong, Yew Soon
Editore: Springer, 2023
ISBN 10: 9811956499 ISBN 13: 9789811956492
Nuovo Rilegato

Da: GreatBookPricesUK, Woodford Green, Regno Unito

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: New. Codice articolo 45853728-n

Contatta il venditore

Compra nuovo

EUR 177,73
Convertire valuta
Spese di spedizione: EUR 17,30
Da: Regno Unito a: U.S.A.
Destinazione, tempi e costi

Quantità: Più di 20 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

Feng, Liang; Gupta, Abhishek; Tan, Kay Chen; Ong, Yew Soon
Editore: Springer, 2023
ISBN 10: 9811956499 ISBN 13: 9789811956492
Nuovo Rilegato

Da: GreatBookPrices, Columbia, MD, U.S.A.

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: New. Codice articolo 45853728-n

Contatta il venditore

Compra nuovo

EUR 194,92
Convertire valuta
Spese di spedizione: EUR 2,26
In U.S.A.
Destinazione, tempi e costi

Quantità: 1 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

Feng, Liang; Gupta, Abhishek; Tan, Kay Chen; Ong, Yew Soon
Editore: Springer, 2023
ISBN 10: 9811956499 ISBN 13: 9789811956492
Antico o usato Rilegato

Da: GreatBookPrices, Columbia, MD, U.S.A.

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: As New. Unread book in perfect condition. Codice articolo 45853728

Contatta il venditore

Compra usato

EUR 196,36
Convertire valuta
Spese di spedizione: EUR 2,26
In U.S.A.
Destinazione, tempi e costi

Quantità: 1 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

Feng, Liang|Gupta, Abhishek|Tan, Kay Chen|Ong, Yew Soon
ISBN 10: 9811956499 ISBN 13: 9789811956492
Nuovo Rilegato
Print on Demand

Da: moluna, Greven, Germania

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. A remarkable facet of the human brain is its ability to manage multiple tasks with apparent simultaneity. Knowledge learned from one task can then be used to enhance problem-solving in other related tasks. In machine learning, the idea of leveraging relevan. Codice articolo 668479601

Contatta il venditore

Compra nuovo

EUR 153,73
Convertire valuta
Spese di spedizione: EUR 48,99
Da: Germania a: U.S.A.
Destinazione, tempi e costi

Quantità: Più di 20 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

Liang Feng
ISBN 10: 9811956499 ISBN 13: 9789811956492
Nuovo Rilegato
Print on Demand

Da: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germania

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Buch. Condizione: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -A remarkable facet of the human brain is its ability to manage multiple tasks with apparent simultaneity. Knowledge learned from one task can then be used to enhance problem-solving in other related tasks. In machine learning, the idea of leveraging relevant information across related tasks as inductive biases to enhance learning performance has attracted significant interest. In contrast, attempts to emulate the human brain's ability to generalize in optimization - particularly in population-based evolutionary algorithms - have received little attention to date.Recently, a novel evolutionary search paradigm, Evolutionary Multi-Task (EMT) optimization, has been proposed in the realm of evolutionary computation. In contrast to traditional evolutionary searches, which solve a single task in a single run, evolutionary multi-tasking algorithm conducts searches concurrently on multiple search spaces corresponding to different tasks or optimization problems,each possessing a unique function landscape. By exploiting the latent synergies among distinct problems, the superior search performance of EMT optimization in terms of solution quality and convergence speed has been demonstrated in a variety of continuous, discrete, and hybrid (mixture of continuous and discrete) tasks.This book discusses the foundations and methodologies of developing evolutionary multi-tasking algorithms for complex optimization, including in domains characterized by factors such as multiple objectives of interest, high-dimensional search spaces and NP-hardness. 232 pp. Englisch. Codice articolo 9789811956492

Contatta il venditore

Compra nuovo

EUR 181,89
Convertire valuta
Spese di spedizione: EUR 23,00
Da: Germania a: U.S.A.
Destinazione, tempi e costi

Quantità: 2 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

Feng, Liang; Gupta, Abhishek; Tan, Kay Chen; Ong, Yew Soon
Editore: Springer, 2023
ISBN 10: 9811956499 ISBN 13: 9789811956492
Antico o usato Rilegato

Da: GreatBookPricesUK, Woodford Green, Regno Unito

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: As New. Unread book in perfect condition. Codice articolo 45853728

Contatta il venditore

Compra usato

EUR 196,93
Convertire valuta
Spese di spedizione: EUR 17,30
Da: Regno Unito a: U.S.A.
Destinazione, tempi e costi

Quantità: Più di 20 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

Liang Feng
ISBN 10: 9811956499 ISBN 13: 9789811956492
Nuovo Rilegato

Da: buchversandmimpf2000, Emtmannsberg, BAYE, Germania

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Buch. Condizione: Neu. Neuware -Recently, a novel evolutionary search paradigm, Evolutionary Multi-Task (EMT) optimization, has been proposed in the realm of evolutionary computation. In contrast to traditional evolutionary searches, which solve a single task in a single run, evolutionary multi-tasking algorithm conducts searches concurrently on multiple search spaces corresponding to different tasks or optimization problems,each possessing a unique function landscape. By exploiting the latent synergies among distinct problems, the superior search performance of EMT optimization in terms of solution quality and convergence speed has been demonstrated in a variety of continuous, discrete, and hybrid (mixture of continuous and discrete) tasks.This book discusses the foundations and methodologies of developing evolutionary multi-tasking algorithms for complex optimization, including in domains characterized by factors such as multiple objectives of interest, high-dimensional search spaces and NP-hardness.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 232 pp. Englisch. Codice articolo 9789811956492

Contatta il venditore

Compra nuovo

EUR 181,89
Convertire valuta
Spese di spedizione: EUR 60,00
Da: Germania a: U.S.A.
Destinazione, tempi e costi

Quantità: 2 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

Liang Feng
ISBN 10: 9811956499 ISBN 13: 9789811956492
Nuovo Rilegato

Da: AHA-BUCH GmbH, Einbeck, Germania

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Buch. Condizione: Neu. Druck auf Anfrage Neuware - Printed after ordering - A remarkable facet of the human brain is its ability to manage multiple tasks with apparent simultaneity. Knowledge learned from one task can then be used to enhance problem-solving in other related tasks. In machine learning, the idea of leveraging relevant information across related tasks as inductive biases to enhance learning performance has attracted significant interest. In contrast, attempts to emulate the human brain's ability to generalize in optimization - particularly in population-based evolutionary algorithms - have received little attention to date.Recently, a novel evolutionary search paradigm, Evolutionary Multi-Task (EMT) optimization, has been proposed in the realm of evolutionary computation. In contrast to traditional evolutionary searches, which solve a single task in a single run, evolutionary multi-tasking algorithm conducts searches concurrently on multiple search spaces corresponding to different tasks or optimization problems,each possessing a unique function landscape. By exploiting the latent synergies among distinct problems, the superior search performance of EMT optimization in terms of solution quality and convergence speed has been demonstrated in a variety of continuous, discrete, and hybrid (mixture of continuous and discrete) tasks.This book discusses the foundations and methodologies of developing evolutionary multi-tasking algorithms for complex optimization, including in domains characterized by factors such as multiple objectives of interest, high-dimensional search spaces and NP-hardness. Codice articolo 9789811956492

Contatta il venditore

Compra nuovo

EUR 185,68
Convertire valuta
Spese di spedizione: EUR 62,59
Da: Germania a: U.S.A.
Destinazione, tempi e costi

Quantità: 1 disponibili

Aggiungi al carrello

Vedi altre 1 copie di questo libro

Vedi tutti i risultati per questo libro