The book focuses on graph neural network methods and applications for scene understanding. Graph Neural Network is an important method for graph-structured data processing, which has strong capability of graph data learning and structural feature extraction. Scene understanding is one of the research focuses in computer vision and image processing, which realizes semantic segmentation and object recognition of image or video. In this book, the algorithm, system design and performance evaluation of scene understanding based on graph neural networks have been studied. First, the book elaborates the background and basic concepts of graph neural network and scene understanding, then introduces the operation mechanism and key methodological foundations of graph neural network. The book then comprehensively explores the implementation and architectural design of graph neural networks for scene understanding tasks, including scene parsing, human parsing, and video object segmentation. The aim of this book is to provide timely coverage of the latest advances and developments in graph neural networks and their applications to scene understanding, particularly for readers interested in research and technological innovation in machine learning, graph neural networks and computer vision. Features of the book include self-supervised feature fusion based graph convolutional network is designed for scene parsing, structure-property based graph representation learning is developed for human parsing, dynamic graph convolutional network based on multi-label learning is designed for human parsing, and graph construction and graph neural network with transformer are proposed for video object segmentation.
Le informazioni nella sezione "Riassunto" possono far riferimento a edizioni diverse di questo titolo.
Weibin Liu received the Ph.D. degree in Signal and Information Processing from Institute of Information Science at Beijing Jiaotong University, China, in 2001. During 2001-2005, he was a researcher in Information Technology Division at Fujitsu Research and Development Center Co., LTD. Since 2005, he has been with the Institute of Information Science, School of Computer Science and Technology at Beijing Jiaotong University, where currently he is a professor in Digital Media Research Group. He was also a visiting researcher in Center for Human Modeling and Simulation at University of Pennsylvania, PA, USA during 2009-2010. His research interests include computer vision, video and image processing, deep learning, computer graphics, virtual human and virtual environment, and pattern recognition.
Huaqing Hao received the B.S. and M.S. degree in Electronic Information Engineering from Heibei University, China, in 2015 and 2018, respectively. She received the Ph.D degree in Signal and Information Processing from Institute of Information Science at Beijing Jiaotong University, China, in 2024. Currently, she is an associate professor at College of Electronic Information Engineering, Hebei University. Her main research interests include computer vision, pattern recognition and deep learning, in particular focusing on human parsing.
Hui Wang received the B.S. degree in Electronic Information Engineering from Hebei University, China, in 2016. He received the Ph.D degree in Signal and Information Processing from Institute of Information Science at Beijing Jiaotong University, China, in 2023. Currently, he is an associate professor at College of Electronic Information Engineering, Hebei University. His research interests include computer vision, image processing, video object segmentation.
Zhiyuan Zou received the B.S. degree in Software Engineering from Beijing Jiaotong University, Beijing, China, in 2015, and Ph.D. degree in Software Engineering from Institute of Information Science, Beijing Jiaotong University, in 2022. Currently, he is an associate professor at Computer School, Beijing Information Science and Technology University. His research interests include scene understanding, deep learning, computer vision, and pattern recognition.
Weiwei Xing received the B.S. degree in Computer Science and Technology and the Ph.D. degree in Signal and Information Processing from Beijing Jiaotong University, Beijing, China, in 2001 and 2006, respectively. She was a visiting scholar at University of Pennsylvania, PA, USA during 2011-2012. She is currently a professor at School of Software Engineering, Beijing Jiaotong University and leads the research group on Intelligent Computing and Big Data. Her research interests include computer vision, intelligent perception and applications.
The book focuses on graph neural network methods and applications for scene understanding. Graph Neural Network is an important method for graph-structured data processing, which has strong capability of graph data learning and structural feature extraction. Scene understanding is one of the research focuses in computer vision and image processing, which realizes semantic segmentation and object recognition of image or video. In this book, the algorithm, system design and performance evaluation of scene understanding based on graph neural networks have been studied. First, the book elaborates the background and basic concepts of graph neural network and scene understanding, then introduces the operation mechanism and key methodological foundations of graph neural network. The book then comprehensively explores the implementation and architectural design of graph neural networks for scene understanding tasks, including scene parsing, human parsing, and video object segmentation. The aim of this book is to provide timely coverage of the latest advances and developments in graph neural networks and their applications to scene understanding, particularly for readers interested in research and technological innovation in machine learning, graph neural networks and computer vision. Features of the book include self-supervised feature fusion based graph convolutional network is designed for scene parsing, structure-property based graph representation learning is developed for human parsing, dynamic graph convolutional network based on multi-label learning is designed for human parsing, and graph construction and graph neural network with transformer are proposed for video object segmentation.
Le informazioni nella sezione "Su questo libro" possono far riferimento a edizioni diverse di questo titolo.
EUR 2,27 per la spedizione in U.S.A.
Destinazione, tempi e costiEUR 13,80 per la spedizione da Regno Unito a U.S.A.
Destinazione, tempi e costiDa: Ria Christie Collections, Uxbridge, Regno Unito
Condizione: New. In. Codice articolo ria9789819799329_new
Quantità: Più di 20 disponibili
Da: moluna, Greven, Germania
Condizione: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Codice articolo 1887558019
Quantità: Più di 20 disponibili
Da: GreatBookPrices, Columbia, MD, U.S.A.
Condizione: New. Codice articolo 49526716-n
Quantità: 15 disponibili
Da: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germania
Buch. Condizione: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -The book focuses on graph neural network methods and applications for scene understanding. Graph Neural Network is an important method for graph-structured data processing, which has strong capability of graph data learning and structural feature extraction. Scene understanding is one of the research focuses in computer vision and image processing, which realizes semantic segmentation and object recognition of image or video. In this book, the algorithm, system design and performance evaluation of scene understanding based on graph neural networks have been studied. First, the book elaborates the background and basic concepts of graph neural network and scene understanding, then introduces the operation mechanism and key methodological foundations of graph neural network. The book then comprehensively explores the implementation and architectural design of graph neural networks for scene understanding tasks, including scene parsing, human parsing, and video object segmentation. The aim of this book is to provide timely coverage of the latest advances and developments in graph neural networks and their applications to scene understanding, particularly for readers interested in research and technological innovation in machine learning, graph neural networks and computer vision. Features of the book include self-supervised feature fusion based graph convolutional network is designed for scene parsing, structure-property based graph representation learning is developed for human parsing, dynamic graph convolutional network based on multi-label learning is designed for human parsing, and graph construction and graph neural network with transformer are proposed for video object segmentation. 219 pp. Englisch. Codice articolo 9789819799329
Quantità: 2 disponibili
Da: California Books, Miami, FL, U.S.A.
Condizione: New. Codice articolo I-9789819799329
Quantità: Più di 20 disponibili
Da: Grand Eagle Retail, Mason, OH, U.S.A.
Hardcover. Condizione: new. Hardcover. The book focuses on graph neural network methods and applications for scene understanding. Graph Neural Network is an important method for graph-structured data processing, which has strong capability of graph data learning and structural feature extraction. Scene understanding is one of the research focuses in computer vision and image processing, which realizes semantic segmentation and object recognition of image or video. In this book, the algorithm, system design and performance evaluation of scene understanding based on graph neural networks have been studied. First, the book elaborates the background and basic concepts of graph neural network and scene understanding, then introduces the operation mechanism and key methodological foundations of graph neural network. The book then comprehensively explores the implementation and architectural design of graph neural networks for scene understanding tasks, including scene parsing, human parsing, and video object segmentation. The aim of this book is to provide timely coverage of the latest advances and developments in graph neural networks and their applications to scene understanding, particularly for readers interested in research and technological innovation in machine learning, graph neural networks and computer vision. Features of the book include self-supervised feature fusion based graph convolutional network is designed for scene parsing, structure-property based graph representation learning is developed for human parsing, dynamic graph convolutional network based on multi-label learning is designed for human parsing, and graph construction and graph neural network with transformer are proposed for video object segmentation. Shipping may be from multiple locations in the US or from the UK, depending on stock availability. Codice articolo 9789819799329
Quantità: 1 disponibili
Da: GreatBookPrices, Columbia, MD, U.S.A.
Condizione: As New. Unread book in perfect condition. Codice articolo 49526716
Quantità: 15 disponibili
Da: Books Puddle, New York, NY, U.S.A.
Condizione: New. Codice articolo 26403527077
Quantità: 4 disponibili
Da: buchversandmimpf2000, Emtmannsberg, BAYE, Germania
Buch. Condizione: Neu. Neuware -The book focuses on graph neural network methods and applications for scene understanding. Graph Neural Network is an important method for graph-structured data processing, which has strong capability of graph data learning and structural feature extraction. Scene understanding is one of the research focuses in computer vision and image processing, which realizes semantic segmentation and object recognition of image or video. In this book, the algorithm, system design and performance evaluation of scene understanding based on graph neural networks have been studied. First, the book elaborates the background and basic concepts of graph neural network and scene understanding, then introduces the operation mechanism and key methodological foundations of graph neural network. The book then comprehensively explores the implementation and architectural design of graph neural networks for scene understanding tasks, including scene parsing, human parsing, and video object segmentation. The aim of this book is to provide timely coverage of the latest advances and developments in graph neural networks and their applications to scene understanding, particularly for readers interested in research and technological innovation in machine learning, graph neural networks and computer vision. Features of the book include self-supervised feature fusion based graph convolutional network is designed for scene parsing, structure-property based graph representation learning is developed for human parsing, dynamic graph convolutional network based on multi-label learning is designed for human parsing, and graph construction and graph neural network with transformer are proposed for video object segmentation.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 236 pp. Englisch. Codice articolo 9789819799329
Quantità: 2 disponibili
Da: CitiRetail, Stevenage, Regno Unito
Hardcover. Condizione: new. Hardcover. The book focuses on graph neural network methods and applications for scene understanding. Graph Neural Network is an important method for graph-structured data processing, which has strong capability of graph data learning and structural feature extraction. Scene understanding is one of the research focuses in computer vision and image processing, which realizes semantic segmentation and object recognition of image or video. In this book, the algorithm, system design and performance evaluation of scene understanding based on graph neural networks have been studied. First, the book elaborates the background and basic concepts of graph neural network and scene understanding, then introduces the operation mechanism and key methodological foundations of graph neural network. The book then comprehensively explores the implementation and architectural design of graph neural networks for scene understanding tasks, including scene parsing, human parsing, and video object segmentation. The aim of this book is to provide timely coverage of the latest advances and developments in graph neural networks and their applications to scene understanding, particularly for readers interested in research and technological innovation in machine learning, graph neural networks and computer vision. Features of the book include self-supervised feature fusion based graph convolutional network is designed for scene parsing, structure-property based graph representation learning is developed for human parsing, dynamic graph convolutional network based on multi-label learning is designed for human parsing, and graph construction and graph neural network with transformer are proposed for video object segmentation. Shipping may be from our UK warehouse or from our Australian or US warehouses, depending on stock availability. Codice articolo 9789819799329
Quantità: 1 disponibili