Articoli correlati a Machine Learning Assisted Evolutionary Multi and Many...

Machine Learning Assisted Evolutionary Multi and Many Objective Optimization - Rilegato

 
9789819920952: Machine Learning Assisted Evolutionary Multi and Many Objective Optimization

Sinossi

This book focuses on machine learning (ML) assisted evolutionary multi- and many-objective optimization (EMâO). EMâO algorithms, namely EMâOAs, iteratively evolve a set of solutions towards a good Pareto Front approximation. The availability of multiple solution sets over successive generations makes EMâOAs amenable to application of ML for different pursuits. 


Recognizing the immense potential for ML-based enhancements in the EMâO domain, this book intends to serve as an exclusive resource for both domain novices and the experienced researchers and practitioners. To achieve this goal, the book first covers the foundations of optimization, including problem and algorithm types. Then, well-structured chapters present some of the key studies on ML-based enhancements in the EMâO domain, systematically addressing important aspects. These include learning to understand the problem structure, converge better, diversify better, simultaneously converge and diversify better, and analyze the Pareto Front. In doing so, this book broadly summarizes the literature, beginning with foundational work on innovization (2003) and objective reduction (2006), and extending to the most recently proposed innovized progress operators (2021-23). It also highlights the utility of ML interventions in the search, post-optimality, and decision-making phases pertaining to the use of EMâOAs. Finally, this book shares insightful perspectives on the future potential for ML based enhancements in the EMâOA domain.

To aid readers, the book includes working codes for the developed algorithms. This book will not only strengthen this emergent theme but also encourage ML researchers to develop more efficient and scalable methods that cater to the requirements of the EMâOA domain. It serves as an inspiration for further research and applications at the synergistic intersection of EMâOA and ML domains.


Le informazioni nella sezione "Riassunto" possono far riferimento a edizioni diverse di questo titolo.

Informazioni sull?autore

Dhish Kumar Saxena received the bachelor’s degree in mechanical engineering (1997), the master’s degree in solid mechanics and design (1999), and the Ph.D. degree in evolutionary many-objective optimization (2008) from the Indian Institute of Technology Kanpur, India. Currently, he is a Professor at the Department of Mechanical and Industrial Engineering, and a joint faculty at the Mehta Family of Data Science and Artificial Intelligence, Indian Institute of Technology (IIT) Roorkee, India. Prior to joining IIT Roorkee, he worked with the Cranfield University and Bath University, U.K., from 2008 to 2012. At a fundamental level, his research has focused on Multi- and Many-objective optimization, including, development of Evolutionary Algorithms and their performance enhancement using Machine Learning; Termination criterion for these algorithms; and Decision Support based on objectives and constraints’ relative preferences. At an applied level, his focus has been on demonstrating the utility of Evolutionary and Mathematical Optimization on a range of real-world problems, including scheduling, engineering design, business-process, and multi-criterion decision making. He is also an Associate Editor for Elsevier’s Swarm and Evolutionary Computation journal.

Sukrit Mittal is a Senior Research Scientist in the AI & Optimization Research team at Franklin Templeton Investments. He obtained his B.Tech. (2012-16) and Ph.D. (2018-22) degrees from IIT Roorkee, India. He also worked with Mahindra Research Valley as a design engineer (2016-18). His research has primarily focused on evolutionary multi- and many-objective optimization, machine learning assisted optimization, and innovization.

Kalyanmoy Deb is University Distinguished Professor and Koenig Endowed Chair Professor at Department of Electrical and Computer Engineering in Michigan State University, USA. His research interests are in evolutionary optimization and their application inmulti-criterion optimization, modeling, and machine learning. He was awarded IEEE Evolutionary Computation Pioneer Award for his sustained work in EMO, Infosys Prize, TWAS Prize in Engineering Sciences, CajAstur Mamdani Prize, Edgeworth-Pareto award, Bhatnagar Prize in Engineering Sciences, and Bessel Research award from Germany. He is fellow of IEEE and ASME.  

Erik D. Goodman was PI and Director of BEACON Center for the Study of Evolution in Action, an NSF Center headquartered at Michigan State University, 2010-2018. He was Professor of Electrical & Computer Engineering, also Mechanical Engineering and Computer Science & Engineering, until retiring in 2022. He co-founded Red Cedar Technology (1999, now part of Siemens), and developed the HEEDS SHERPA commercial design optimization software. Honors include Michigan Distinguished Professor of the Year, 2009; MSU Distinguished Faculty Award, 2011; Senior Fellow, International Society for Genetic and Evolutionary Computation, 2004; Founding Chair, ACM SIG on Genetic and Evolutionary Computation (SIGEVO), 2005-2007.

Dalla quarta di copertina

This book focuses on machine learning (ML) assisted evolutionary multi- and many-objective optimization (EMâO). EMâO algorithms, namely EMâOAs, iteratively evolve a set of solutions towards a good Pareto Front approximation. The availability of multiple solution sets over successive generations makes EMâOAs amenable to application of ML for different pursuits. 


Recognizing the immense potential for ML-based enhancements in the EMâO domain, this book intends to serve as an exclusive resource for both domain novices and the experienced researchers and practitioners. To achieve this goal, the book first covers the foundations of optimization, including problem and algorithm types. Then, well-structured chapters present some of the key studies on ML-based enhancements in the EMâO domain, systematically addressing important aspects. These include learning to understand the problem structure, converge better, diversify better, simultaneously converge and diversify better, and analyze the Pareto Front. In doing so, this book broadly summarizes the literature, beginning with foundational work on innovization (2003) and objective reduction (2006), and extending to the most recently proposed innovized progress operators (2021-23). It also highlights the utility of ML interventions in the search, post-optimality, and decision-making phases pertaining to the use of EMâOAs. Finally, this book shares insightful perspectives on the future potential for ML based enhancements in the EMâOA domain.

To aid readers, the book includes working codes for the developed algorithms. This book will not only strengthen this emergent theme but also encourage ML researchers to develop more efficient and scalable methods that cater to the requirements of the EMâOA domain. It serves as an inspiration for further research and applications at the synergistic intersection of EMâOA and ML domains.

Le informazioni nella sezione "Su questo libro" possono far riferimento a edizioni diverse di questo titolo.

Compra usato

Condizioni: come nuovo
Unread book in perfect condition...
Visualizza questo articolo

EUR 2,25 per la spedizione in U.S.A.

Destinazione, tempi e costi

Risultati della ricerca per Machine Learning Assisted Evolutionary Multi and Many...

Foto dell'editore

Saxena, Dhish Kumar; Mittal, Sukrit; Deb, Kalyanmoy; Goodman, Erik D.
Editore: Springer, 2024
ISBN 10: 9819920957 ISBN 13: 9789819920952
Nuovo Rilegato

Da: Best Price, Torrance, CA, U.S.A.

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: New. SUPER FAST SHIPPING. Codice articolo 9789819920952

Contatta il venditore

Compra nuovo

EUR 156,89
Convertire valuta
Spese di spedizione: EUR 7,65
In U.S.A.
Destinazione, tempi e costi

Quantità: 1 disponibili

Aggiungi al carrello

Foto dell'editore

Dhish Kumar Saxena
ISBN 10: 9819920957 ISBN 13: 9789819920952
Nuovo Rilegato

Da: Grand Eagle Retail, Mason, OH, U.S.A.

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Hardcover. Condizione: new. Hardcover. This book focuses on machine learning (ML) assisted evolutionary multi- and many-objective optimization (EMaO). EMaO algorithms, namely EMaOAs, iteratively evolve a set of solutions towards a good Pareto Front approximation. The availability of multiple solution sets over successive generations makes EMaOAs amenable to application of ML for different pursuits. Recognizing the immense potential for ML-based enhancements in the EMaO domain, this book intends to serve as an exclusive resource for both domain novices and the experienced researchers and practitioners. To achieve this goal, the book first covers the foundations of optimization, including problem and algorithm types. Then, well-structured chapters present some of the key studies on ML-based enhancements in the EMaO domain, systematically addressing important aspects. These include learning to understand the problem structure, converge better, diversify better, simultaneously converge and diversify better, and analyze the Pareto Front. In doing so, this book broadly summarizes the literature, beginning with foundational work on innovization (2003) and objective reduction (2006), and extending to the most recently proposed innovized progress operators (2021-23). It also highlights the utility of ML interventions in the search, post-optimality, and decision-making phases pertaining to the use of EMaOAs. Finally, this book shares insightful perspectives on the future potential for ML based enhancements in the EMaOA domain.To aid readers, the book includes working codes for the developed algorithms. This book will not only strengthen this emergent theme but also encourage ML researchers to develop more efficient and scalable methods that cater to the requirements of the EMaOA domain. It serves as an inspiration for further research and applications at the synergistic intersection of EMaOA and ML domains. This book focuses on machine learning (ML) assisted evolutionary multi- and many-objective optimization (EMaO). Finally, this book shares insightful perspectives on the future potential for ML based enhancements in the EMaOA domain.To aid readers, the book includes working codes for the developed algorithms. Shipping may be from multiple locations in the US or from the UK, depending on stock availability. Codice articolo 9789819920952

Contatta il venditore

Compra nuovo

EUR 164,76
Convertire valuta
Spese di spedizione: GRATIS
In U.S.A.
Destinazione, tempi e costi

Quantità: 1 disponibili

Aggiungi al carrello

Foto dell'editore

Saxena, Dhish Kumar; Mittal, Sukrit; Deb, Kalyanmoy; Goodman, Erik D.
Editore: Springer, 2024
ISBN 10: 9819920957 ISBN 13: 9789819920952
Nuovo Rilegato

Da: GreatBookPrices, Columbia, MD, U.S.A.

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: New. Codice articolo 47435957-n

Contatta il venditore

Compra nuovo

EUR 184,63
Convertire valuta
Spese di spedizione: EUR 2,25
In U.S.A.
Destinazione, tempi e costi

Quantità: Più di 20 disponibili

Aggiungi al carrello

Foto dell'editore

Saxena, Dhish Kumar; Mittal, Sukrit; Deb, Kalyanmoy; Goodman, Erik D.
Editore: Springer, 2024
ISBN 10: 9819920957 ISBN 13: 9789819920952
Nuovo Rilegato

Da: California Books, Miami, FL, U.S.A.

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: New. Codice articolo I-9789819920952

Contatta il venditore

Compra nuovo

EUR 186,96
Convertire valuta
Spese di spedizione: GRATIS
In U.S.A.
Destinazione, tempi e costi

Quantità: Più di 20 disponibili

Aggiungi al carrello

Foto dell'editore

Saxena, Dhish Kumar; Mittal, Sukrit; Deb, Kalyanmoy; Goodman, Erik D.
Editore: Springer, 2024
ISBN 10: 9819920957 ISBN 13: 9789819920952
Nuovo Rilegato

Da: Ria Christie Collections, Uxbridge, Regno Unito

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: New. In. Codice articolo ria9789819920952_new

Contatta il venditore

Compra nuovo

EUR 178,05
Convertire valuta
Spese di spedizione: EUR 13,84
Da: Regno Unito a: U.S.A.
Destinazione, tempi e costi

Quantità: Più di 20 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

Saxena, Dhish Kumar|Mittal, Sukrit|Deb, Kalyanmoy|Goodman, Erik D.
ISBN 10: 9819920957 ISBN 13: 9789819920952
Nuovo Rilegato

Da: moluna, Greven, Germania

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: New. Codice articolo 838236801

Contatta il venditore

Compra nuovo

EUR 144,94
Convertire valuta
Spese di spedizione: EUR 48,99
Da: Germania a: U.S.A.
Destinazione, tempi e costi

Quantità: Più di 20 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

Dhish Kumar Saxena
Editore: Apress Mrz 2024, 2024
ISBN 10: 9819920957 ISBN 13: 9789819920952
Nuovo Rilegato
Print on Demand

Da: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germania

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Buch. Condizione: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -This book focuses on machine learning (ML) assisted evolutionary multi- and many-objective optimization (EMâO). EMâO algorithms, namely EMâOAs, iteratively evolve a set of solutions towards a good Pareto Front approximation. The availability of multiple solution sets over successive generations makes EMâOAs amenable to application of ML for different pursuits.Recognizing the immense potential for ML-based enhancements in the EMâO domain, this book intends to serve as an exclusive resource for both domain novices and the experienced researchers and practitioners.To achieve this goal, the book first covers the foundations of optimization, including problem and algorithm types.Then, well-structured chapters present some of the key studies on ML-based enhancements in the EMâO domain, systematically addressing important aspects. These include learning to understand the problem structure, converge better, diversify better, simultaneously converge and diversify better, and analyze the Pareto Front. In doing so, this book broadly summarizes the literature, beginning with foundational work on innovization (2003) and objective reduction (2006), and extending to the most recently proposed innovized progress operators (2021-23). It also highlights the utility of ML interventions in the search, post-optimality, and decision-making phases pertaining to the use of EMâOAs. Finally, this book shares insightful perspectives on the future potential for ML based enhancements in the EMâOA domain.To aid readers, the book includes working codes for the developed algorithms. This book will not only strengthen this emergent theme but also encourage ML researchers to develop more efficient and scalable methods that cater to the requirements of the EMâOA domain. It serves as an inspiration for further research and applications at the synergistic intersection of EMâOA and ML domains. 244 pp. Englisch. Codice articolo 9789819920952

Contatta il venditore

Compra nuovo

EUR 171,19
Convertire valuta
Spese di spedizione: EUR 23,00
Da: Germania a: U.S.A.
Destinazione, tempi e costi

Quantità: 2 disponibili

Aggiungi al carrello

Foto dell'editore

Saxena, Dhish Kumar; Mittal, Sukrit; Deb, Kalyanmoy; Goodman, Erik D.
Editore: Springer, 2024
ISBN 10: 9819920957 ISBN 13: 9789819920952
Nuovo Rilegato

Da: GreatBookPricesUK, Woodford Green, Regno Unito

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: New. Codice articolo 47435957-n

Contatta il venditore

Compra nuovo

EUR 178,03
Convertire valuta
Spese di spedizione: EUR 17,33
Da: Regno Unito a: U.S.A.
Destinazione, tempi e costi

Quantità: Più di 20 disponibili

Aggiungi al carrello

Foto dell'editore

Saxena, Dhish Kumar; Mittal, Sukrit; Deb, Kalyanmoy; Goodman, Erik D.
Editore: Springer, 2024
ISBN 10: 9819920957 ISBN 13: 9789819920952
Antico o usato Rilegato

Da: GreatBookPrices, Columbia, MD, U.S.A.

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: As New. Unread book in perfect condition. Codice articolo 47435957

Contatta il venditore

Compra usato

EUR 197,09
Convertire valuta
Spese di spedizione: EUR 2,25
In U.S.A.
Destinazione, tempi e costi

Quantità: Più di 20 disponibili

Aggiungi al carrello

Foto dell'editore

Saxena, Dhish Kumar; Mittal, Sukrit; Deb, Kalyanmoy; Goodman, Erik D.
Editore: Springer, 2024
ISBN 10: 9819920957 ISBN 13: 9789819920952
Antico o usato Rilegato

Da: GreatBookPricesUK, Woodford Green, Regno Unito

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: As New. Unread book in perfect condition. Codice articolo 47435957

Contatta il venditore

Compra usato

EUR 197,20
Convertire valuta
Spese di spedizione: EUR 17,33
Da: Regno Unito a: U.S.A.
Destinazione, tempi e costi

Quantità: Più di 20 disponibili

Aggiungi al carrello

Vedi altre 8 copie di questo libro

Vedi tutti i risultati per questo libro