This book starts from the classic recommendation algorithms, introduces readers to the basic principles and main concepts of the traditional algorithms, and analyzes their advantages and limitations. Then, it addresses the fundamentals of deep learning, focusing on the deep-learning-based technology used, and analyzes problems arising in the theory and practice of recommender systems, helping readers gain a deeper understanding of the cutting-edge technology used in these systems. Lastly, it shares practical experience with Microsoft 's open source project Microsoft Recommenders. Readers can learn the design principles of recommendation algorithms using the source code provided in this book, allowing them to quickly build accurate and efficient recommender systems from scratch.
Le informazioni nella sezione "Riassunto" possono far riferimento a edizioni diverse di questo titolo.
Dongsheng Li has been a principal research manager with Microsoft Research Asia (MSRA) since February 2020. His research interests include recommender systems and general machine learning applications. He has published over 100 papers in top-tier conferences and journals and has served as a program committee member for leading conferences.
Dr. Jianxun Lian graduated from the University of Science and Technology of China and is currently a senior researcher with Microsoft Research Asia. His research interests mainly include recommendation systems, user modeling, and deep-learning-related technologies.
Le Zhang is a machine learning architect with Standard Chartered Bank. He has extensive experience in applying cutting-edge machine learning and artificial intelligence technology to accelerate digital transformation for enterprises and start-ups.Kan Ren is a senior researcher with Microsoft Research. His main research interests include spatiotemporal data mining, reasoning, and decision optimization with applications in healthcare, recommender systems, and finance. Kan has published many papers in top-tier conferences on machine learning and data mining.
Tun LU is currently a full professor with the School of Computer Science, Fudan University, China. His research interests include computer-supported cooperative work (CSCW), social computing, recommender systems, and human–computer interaction (HCI). He has published more than 80 peer-reviewed publications in prestigious conferences and journals.
Tao Wu is a Principal Applied Science Manager at Microsoft's Business Applications and Platform Group, and leading product development efforts utilizing large language models and generative AI. He spearheaded the creation of the Microsoft Recommenders project (recently donated to the Linux Foundation), which has become one of the most popular open source projects on recommender systems. Prior to Microsoft, Tao held various research, engineering and leadership positions at Nokia Research Center and MIT CSAIL.
Dr. Xing Xie is currently a senior principal research manager with Microsoft Research Asia. In the past several years, he has published over 300 papers, won the 2022 ACM SIGKDD 2022 Test-of-Time Award and 2021 ACM SIGKDD China Test-of-Time Award, received the 10-Year Impact Award (honorable mention) at ACM SIGSPATIAL 2020, and won the 10-Year Impact Award at ACM SIGSPATIAL 2019. He currently serves on the editorial boards of ACM Transactions on Recommender Systems (ToRS), ACM Transactions on Social Computing (TSC), and ACM Transactions on Intelligent Systems and Technology (TIST).
This book starts from the classic recommendation algorithms, introduces readers to the basic principles and main concepts of the traditional algorithms, and analyzes their advantages and limitations. Then, it addresses the fundamentals of deep learning, focusing on the deep-learning-based technology used, and analyzes problems arising in the theory and practice of recommender systems, helping readers gain a deeper understanding of the cutting-edge technology used in these systems. Lastly, it shares practical experience with Microsoft 's open source project Microsoft Recommenders. Readers can learn the design principles of recommendation algorithms using the source code provided in this book, allowing them to quickly build accurate and efficient recommender systems from scratch.
Le informazioni nella sezione "Su questo libro" possono far riferimento a edizioni diverse di questo titolo.
EUR 12,37 per la spedizione da U.S.A. a Italia
Destinazione, tempi e costiGRATIS per la spedizione da U.S.A. a Italia
Destinazione, tempi e costiDa: Basi6 International, Irving, TX, U.S.A.
Condizione: Brand New. New. US edition. Expediting shipping for all USA and Europe orders excluding PO Box. Excellent Customer Service. Codice articolo ABEJUNE24-19501
Quantità: 1 disponibili
Da: Books From California, Simi Valley, CA, U.S.A.
hardcover. Condizione: Very Good. Codice articolo mon0003663899
Quantità: 1 disponibili
Da: Basi6 International, Irving, TX, U.S.A.
Condizione: Brand New. New. US edition. Expediting shipping for all USA and Europe orders excluding PO Box. Excellent Customer Service. Codice articolo ABEJUNE24-381084
Quantità: 3 disponibili
Da: Romtrade Corp., STERLING HEIGHTS, MI, U.S.A.
Condizione: New. This is a Brand-new US Edition. This Item may be shipped from US or any other country as we have multiple locations worldwide. Codice articolo ABNR-277510
Quantità: 1 disponibili
Da: Books Puddle, New York, NY, U.S.A.
Condizione: New. Codice articolo 26398559824
Quantità: 1 disponibili
Da: Majestic Books, Hounslow, Regno Unito
Condizione: New. Codice articolo 397817231
Quantità: 1 disponibili
Da: Biblios, Frankfurt am main, HESSE, Germania
Condizione: New. Codice articolo 18398559834
Quantità: 1 disponibili
Da: moluna, Greven, Germania
Gebunden. Condizione: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. This book starts from the classic recommendation algorithms, introduces readers to the basic principles and main concepts of the traditional algorithms, and analyzes their advantages and limitations. Then, it addresses the fundamentals of deep learning, . Codice articolo 1241520415
Quantità: Più di 20 disponibili
Da: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germania
Buch. Condizione: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -This book starts from the classic recommendation algorithms, introduces readers to the basic principles and main concepts of the traditional algorithms, and analyzes their advantages and limitations. Then, it addresses the fundamentals of deep learning, focusing on the deep-learning-based technology used, and analyzes problems arising in the theory and practice of recommender systems, helping readers gain a deeper understanding of the cutting-edge technology used in these systems. Lastly, it shares practical experience with Microsoft 's open source project Microsoft Recommenders. Readers can learn the design principles of recommendation algorithms using the source code provided in this book, allowing them to quickly build accurate and efficient recommender systems from scratch. 296 pp. Englisch. Codice articolo 9789819989638
Quantità: 2 disponibili
Da: Ria Christie Collections, Uxbridge, Regno Unito
Condizione: New. In. Codice articolo ria9789819989638_new
Quantità: Più di 20 disponibili