Articoli correlati a Advanced Machine Learning With Evolutionary and Metaheuristi...

Advanced Machine Learning With Evolutionary and Metaheuristic Techniques - Rilegato

 
9789819997176: Advanced Machine Learning With Evolutionary and Metaheuristic Techniques

Sinossi

This book delves into practical implementation of evolutionary and metaheuristic algorithms to advance the capacity of machine learning. The readers can gain insight into the capabilities of data-driven evolutionary optimization in materials mechanics, and optimize your learning algorithms for maximum efficiency. Or unlock the strategies behind hyperparameter optimization to enhance your transfer learning algorithms, yielding remarkable outcomes. Or embark on an illuminating journey through evolutionary techniques designed for constructing deep-learning frameworks. The book also introduces an intelligent RPL attack detection system tailored for IoT networks. Explore a promising avenue of optimization by fusing Particle Swarm Optimization with Reinforcement Learning.

 

It uncovers the indispensable role of metaheuristics in supervised machine learning algorithms. Ultimately, this book bridges the realms of evolutionary dynamic optimization andmachine learning, paving the way for pioneering innovations in the field.

Le informazioni nella sezione "Riassunto" possono far riferimento a edizioni diverse di questo titolo.

Informazioni sull?autore

Dr. Jayaraman Valadi  is a Distinguished Professor of Computer Science at FLAME University, Pune, India. He earned his Doctorate degree in Chemistry from Pune University. His research encompasses diverse areas, focusing on modeling and simulations in chemical and biochemical engineering, as well as process modeling, control, and optimization. Over the past decade, he has dedicated his efforts to exploring applications of Machine Learning and Artificial intelligence across various domains. He has dozens of publications in various reputed international journals. Beginning his journey in 1976, Dr. Valadi was associated with the Council of Industrial and Scientific Research (CSIR) in India, where he worked for 33 years and retired as a Deputy Director in 2009. After that, he was a CSIR Emeritus Scientist at the Center for Development of Advanced Computing, Pune till January 2013 & thereafter as a visiting faculty at Shiv Nadar University, Greater Noida, India until May 2023.

 

Dr. Krishna Pratap Singh is an Associate Professor in the Department of Information Technology at the Indian Institute of Information Technology Allahabad (IIITA), India, where he also heads the Machine Learning and Optimization (MLO) Lab. Dr. Singh earned his Ph.D. in Optimization (2009) from IIT Roorkee, and has over 15 years of research and academic experience. He is a member of the Sakura Science Club, Japan, Senior member IEEE and ACM Member. Currently, his research group is working on Transfer Learning for low resources data and towards developing a model in a Federated learning setting.

 

Dr. Muneendra Ojha is an Assistant Professor in the Department of Information Technology at the Indian Institute of Information Technology Allahabad (IIITA), India, and leading the Artificial Intelligence and Multiagent Systems (AIMS) lab. Dr. Ojha earned his Ph.D. from IIITA and MS from the University of Missouri-Columbia, USA.Dr. Ojha has more than 19 years of academic and industry experience. His research interests include multi-objective optimization, evolutionary algorithms, semantic web, natural language processing, deep reinforcement learning, and multi-agent systems.

 

Dr. Patrick Siarry received the PhD degree from the University Paris 6, in 1986 and the Doctorate of Sciences(Habilitation) from the University of Paris 11, in 1994. He was first involved in the development of analog and digital models of nuclear power plants at  Electricité de France (EDF. Since 1995 he is a full Professor of automatics and informatics. His main research interests are the adaptation of new stochastic global optimization heuristics to various situations (multi objective mixed discrete-continuous variables, continuous variables, dynamic,etc.) and their application to various engineering fields. He is also interested in the fitting of process models to experimental data and thelearning of fuzzy rule bases and neural networks. P.Siarry is a senior member  IEEE,  an appointed member of the Technical Committee on Soft Computing of the IEEE systems, Man and Cybernetics (SMC) Society and an appointed member of the Technical Committee on Optimal Control (TC 2.4) of IFAC.

Dalla quarta di copertina

This book delves into practical implementation of evolutionary and metaheuristic algorithms to advance the capacity of machine learning. The readers can gain insight into the capabilities of data-driven evolutionary optimization in materials mechanics, and optimize your learning algorithms for maximum efficiency. Or unlock the strategies behind hyperparameter optimization to enhance your transfer learning algorithms, yielding remarkable outcomes. Or embark on an illuminating journey through evolutionary techniques designed for constructing deep-learning frameworks. The book also introduces an intelligent RPL attack detection system tailored for IoT networks. Explore a promising avenue of optimization by fusing Particle Swarm Optimization with Reinforcement Learning.

 

It uncovers the indispensable role of metaheuristics in supervised machine learning algorithms. Ultimately, this book bridges the realms of evolutionary dynamic optimization and machine learning, paving the way for pioneering innovations in the field.

Le informazioni nella sezione "Su questo libro" possono far riferimento a edizioni diverse di questo titolo.

Compra usato

Condizioni: come nuovo
Unread book in perfect condition...
Visualizza questo articolo

EUR 17,14 per la spedizione da U.S.A. a Italia

Destinazione, tempi e costi

EUR 9,70 per la spedizione da Germania a Italia

Destinazione, tempi e costi

Risultati della ricerca per Advanced Machine Learning With Evolutionary and Metaheuristi...

Immagini fornite dal venditore

Editore: Springer Nature Singapore, 2024
ISBN 10: 9819997178 ISBN 13: 9789819997176
Nuovo Rilegato
Print on Demand

Da: moluna, Greven, Germania

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. A comprehensive exploration of evolutionary and metaheuristic algorithms applied to various aspects of machine learningShowcases how evolutionary and metaheuristic algorithms are revolutionizing industries like biomed and healthcareIntegrat. Codice articolo 1276622526

Contatta il venditore

Compra nuovo

EUR 180,07
Convertire valuta
Spese di spedizione: EUR 9,70
Da: Germania a: Italia
Destinazione, tempi e costi

Quantità: Più di 20 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

Jayaraman Valadi
ISBN 10: 9819997178 ISBN 13: 9789819997176
Nuovo Rilegato
Print on Demand

Da: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germania

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Buch. Condizione: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -This book delves into practical implementation of evolutionary and metaheuristic algorithms to advance the capacity of machine learning. The readers can gain insight into the capabilities of data-driven evolutionary optimization in materials mechanics, and optimize your learning algorithms for maximum efficiency. Or unlock the strategies behind hyperparameter optimization to enhance your transfer learning algorithms, yielding remarkable outcomes. Or embark on an illuminating journey through evolutionary techniques designed for constructing deep-learning frameworks. The book also introduces an intelligent RPL attack detection system tailored for IoT networks. Explore a promising avenue of optimization by fusing Particle Swarm Optimization with Reinforcement Learning.It uncovers the indispensable role of metaheuristics in supervised machine learning algorithms. Ultimately, this book bridges the realms of evolutionary dynamic optimization andmachine learning, paving the way for pioneering innovations in the field. 372 pp. Englisch. Codice articolo 9789819997176

Contatta il venditore

Compra nuovo

EUR 213,99
Convertire valuta
Spese di spedizione: EUR 11,00
Da: Germania a: Italia
Destinazione, tempi e costi

Quantità: 2 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

Jayaraman Valadi
ISBN 10: 9819997178 ISBN 13: 9789819997176
Nuovo Rilegato

Da: buchversandmimpf2000, Emtmannsberg, BAYE, Germania

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Buch. Condizione: Neu. Neuware -This book delves into practical implementation of evolutionary and metaheuristic algorithms to advance the capacity of machine learning. The readers can gain insight into the capabilities of data-driven evolutionary optimization in materials mechanics, and optimize your learning algorithms for maximum efficiency. Or unlock the strategies behind hyperparameter optimization to enhance your transfer learning algorithms, yielding remarkable outcomes. Or embark on an illuminating journey through evolutionary techniques designed for constructing deep-learning frameworks. The book also introduces an intelligent RPL attack detection system tailored for IoT networks. Explore a promising avenue of optimization by fusing Particle Swarm Optimization with Reinforcement Learning.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 372 pp. Englisch. Codice articolo 9789819997176

Contatta il venditore

Compra nuovo

EUR 213,99
Convertire valuta
Spese di spedizione: EUR 15,00
Da: Germania a: Italia
Destinazione, tempi e costi

Quantità: 2 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

Jayaraman Valadi
ISBN 10: 9819997178 ISBN 13: 9789819997176
Nuovo Rilegato

Da: AHA-BUCH GmbH, Einbeck, Germania

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Buch. Condizione: Neu. Druck auf Anfrage Neuware - Printed after ordering - This book delves into practical implementation of evolutionary and metaheuristic algorithms to advance the capacity of machine learning. The readers can gain insight into the capabilities of data-driven evolutionary optimization in materials mechanics, and optimize your learning algorithms for maximum efficiency. Or unlock the strategies behind hyperparameter optimization to enhance your transfer learning algorithms, yielding remarkable outcomes. Or embark on an illuminating journey through evolutionary techniques designed for constructing deep-learning frameworks. The book also introduces an intelligent RPL attack detection system tailored for IoT networks. Explore a promising avenue of optimization by fusing Particle Swarm Optimization with Reinforcement Learning.It uncovers the indispensable role of metaheuristics in supervised machine learning algorithms. Ultimately, this book bridges the realms of evolutionary dynamic optimization andmachine learning, paving the way for pioneering innovations in the field. Codice articolo 9789819997176

Contatta il venditore

Compra nuovo

EUR 223,11
Convertire valuta
Spese di spedizione: EUR 14,99
Da: Germania a: Italia
Destinazione, tempi e costi

Quantità: 1 disponibili

Aggiungi al carrello

Foto dell'editore

Valadi, Jayaraman (EDT); Singh, Krishna Pratap (EDT); Ojha, Muneendra (EDT); Siarry, Patrick (EDT)
Editore: Springer, 2024
ISBN 10: 9819997178 ISBN 13: 9789819997176
Nuovo Rilegato

Da: GreatBookPrices, Columbia, MD, U.S.A.

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: New. Codice articolo 47499934-n

Contatta il venditore

Compra nuovo

EUR 239,50
Convertire valuta
Spese di spedizione: EUR 17,14
Da: U.S.A. a: Italia
Destinazione, tempi e costi

Quantità: 1 disponibili

Aggiungi al carrello

Foto dell'editore

Valadi, Jayaraman (EDT); Singh, Krishna Pratap (EDT); Ojha, Muneendra (EDT); Siarry, Patrick (EDT)
Editore: Springer, 2024
ISBN 10: 9819997178 ISBN 13: 9789819997176
Antico o usato Rilegato

Da: GreatBookPrices, Columbia, MD, U.S.A.

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: As New. Unread book in perfect condition. Codice articolo 47499934

Contatta il venditore

Compra usato

EUR 251,69
Convertire valuta
Spese di spedizione: EUR 17,14
Da: U.S.A. a: Italia
Destinazione, tempi e costi

Quantità: 1 disponibili

Aggiungi al carrello

Foto dell'editore

Editore: Springer, 2024
ISBN 10: 9819997178 ISBN 13: 9789819997176
Nuovo Rilegato

Da: Books Puddle, New York, NY, U.S.A.

Valutazione del venditore 4 su 5 stelle 4 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: New. 2024th edition NO-PA16APR2015-KAP. Codice articolo 26399407436

Contatta il venditore

Compra nuovo

EUR 284,57
Convertire valuta
Spese di spedizione: EUR 7,71
Da: U.S.A. a: Italia
Destinazione, tempi e costi

Quantità: 4 disponibili

Aggiungi al carrello

Foto dell'editore

Jayaraman Valadi
ISBN 10: 9819997178 ISBN 13: 9789819997176
Nuovo Rilegato

Da: Grand Eagle Retail, Mason, OH, U.S.A.

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Hardcover. Condizione: new. Hardcover. This book delves into practical implementation of evolutionary and metaheuristic algorithms to advance the capacity of machine learning. The readers can gain insight into the capabilities of data-driven evolutionary optimization in materials mechanics, and optimize your learning algorithms for maximum efficiency. Or unlock the strategies behind hyperparameter optimization to enhance your transfer learning algorithms, yielding remarkable outcomes. Or embark on an illuminating journey through evolutionary techniques designed for constructing deep-learning frameworks. The book also introduces an intelligent RPL attack detection system tailored for IoT networks. Explore a promising avenue of optimization by fusing Particle Swarm Optimization with Reinforcement Learning. It uncovers the indispensable role of metaheuristics in supervised machine learning algorithms. Ultimately, this book bridges the realms of evolutionary dynamic optimization andmachine learning, paving the way for pioneering innovations in the field. This book delves into practical implementation of evolutionary and metaheuristic algorithms to advance the capacity of machine learning. The readers can gain insight into the capabilities of data-driven evolutionary optimization in materials mechanics, and optimize your learning algorithms for maximum efficiency. Shipping may be from multiple locations in the US or from the UK, depending on stock availability. Codice articolo 9789819997176

Contatta il venditore

Compra nuovo

EUR 245,51
Convertire valuta
Spese di spedizione: EUR 64,29
Da: U.S.A. a: Italia
Destinazione, tempi e costi

Quantità: 1 disponibili

Aggiungi al carrello

Foto dell'editore

Editore: Springer, 2024
ISBN 10: 9819997178 ISBN 13: 9789819997176
Nuovo Rilegato
Print on Demand

Da: Majestic Books, Hounslow, Regno Unito

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: New. Print on Demand. Codice articolo 398050963

Contatta il venditore

Compra nuovo

EUR 299,62
Convertire valuta
Spese di spedizione: EUR 10,19
Da: Regno Unito a: Italia
Destinazione, tempi e costi

Quantità: 4 disponibili

Aggiungi al carrello

Foto dell'editore

Valadi, Jayaraman (Editor)/ Singh, Krishna Pratap (Editor)/ Ojha, Muneendra (Editor)/ Siarry, Patrick (Editor)
ISBN 10: 9819997178 ISBN 13: 9789819997176
Nuovo Rilegato

Da: Revaluation Books, Exeter, Regno Unito

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Hardcover. Condizione: Brand New. 372 pages. 9.26x6.11x9.33 inches. In Stock. Codice articolo x-9819997178

Contatta il venditore

Compra nuovo

EUR 299,92
Convertire valuta
Spese di spedizione: EUR 11,51
Da: Regno Unito a: Italia
Destinazione, tempi e costi

Quantità: 1 disponibili

Aggiungi al carrello

Vedi altre 2 copie di questo libro

Vedi tutti i risultati per questo libro