A professional, applied manual for designing, building, and operationalizing knowledge graphs that materially improve LLM-driven systems. This book provides the end-to-end technical roadmap data ingestion, entity/relation extraction, schema design, storage, querying, and LLM integration required to create explainable, high-precision hybrid AI systems.
What’s inside
Le informazioni nella sezione "Riassunto" possono far riferimento a edizioni diverse di questo titolo.
Da: GreatBookPrices, Columbia, MD, U.S.A.
Condizione: New. Codice articolo 51341059-n
Quantità: Più di 20 disponibili
Da: Grand Eagle Retail, Bensenville, IL, U.S.A.
Paperback. Condizione: new. Paperback. A professional, applied manual for designing, building, and operationalizing knowledge graphs that materially improve LLM-driven systems. This book provides the end-to-end technical roadmap data ingestion, entity/relation extraction, schema design, storage, querying, and LLM integration required to create explainable, high-precision hybrid AI systems.What's insideFundamentals of graph modeling, schema & ontology design, and graph theory essentials.Practical pipelines for extracting structured facts from unstructured text using NLP and embeddings.Integration patterns for Neo4j/RDF/graph stores, vector databases, and RAG architectures.Querying and analytics: SPARQL, Cypher, and hybrid retrieval approaches.Performance optimization, versioning, governance, and visualization techniques.Domain case studies (healthcare, finance, enterprise search) demonstrating measurable ROI.Key topics;knowledge graphs, graph databases, ontology design, entity extraction, SPARQL, Cypher, RAG, embeddings, semantic search, graph-augmented LLMs, information retrieval, data governance.Who should read thisData engineers, knowledge engineers, ML/AI practitioners, and technical product managers tasked with building authoritative retrieval systems or explainable AI features. A working knowledge of databases and basic NLP is helpful.Deliverables & formatReproducible projects that convert raw text into production-ready graph assets.Query recipes, integration blueprints, and operational guidelines for graph maintenance and scaling. This item is printed on demand. Shipping may be from multiple locations in the US or from the UK, depending on stock availability. Codice articolo 9798264455261
Quantità: 1 disponibili
Da: California Books, Miami, FL, U.S.A.
Condizione: New. Print on Demand. Codice articolo I-9798264455261
Quantità: Più di 20 disponibili
Da: GreatBookPrices, Columbia, MD, U.S.A.
Condizione: As New. Unread book in perfect condition. Codice articolo 51341059
Quantità: Più di 20 disponibili
Da: GreatBookPricesUK, Woodford Green, Regno Unito
Condizione: As New. Unread book in perfect condition. Codice articolo 51341059
Quantità: Più di 20 disponibili
Da: GreatBookPricesUK, Woodford Green, Regno Unito
Condizione: New. Codice articolo 51341059-n
Quantità: Più di 20 disponibili
Da: CitiRetail, Stevenage, Regno Unito
Paperback. Condizione: new. Paperback. A professional, applied manual for designing, building, and operationalizing knowledge graphs that materially improve LLM-driven systems. This book provides the end-to-end technical roadmap data ingestion, entity/relation extraction, schema design, storage, querying, and LLM integration required to create explainable, high-precision hybrid AI systems.What's insideFundamentals of graph modeling, schema & ontology design, and graph theory essentials.Practical pipelines for extracting structured facts from unstructured text using NLP and embeddings.Integration patterns for Neo4j/RDF/graph stores, vector databases, and RAG architectures.Querying and analytics: SPARQL, Cypher, and hybrid retrieval approaches.Performance optimization, versioning, governance, and visualization techniques.Domain case studies (healthcare, finance, enterprise search) demonstrating measurable ROI.Key topics;knowledge graphs, graph databases, ontology design, entity extraction, SPARQL, Cypher, RAG, embeddings, semantic search, graph-augmented LLMs, information retrieval, data governance.Who should read thisData engineers, knowledge engineers, ML/AI practitioners, and technical product managers tasked with building authoritative retrieval systems or explainable AI features. A working knowledge of databases and basic NLP is helpful.Deliverables & formatReproducible projects that convert raw text into production-ready graph assets.Query recipes, integration blueprints, and operational guidelines for graph maintenance and scaling. This item is printed on demand. Shipping may be from our UK warehouse or from our Australian or US warehouses, depending on stock availability. Codice articolo 9798264455261
Quantità: 1 disponibili