Articoli correlati a Optimizing Retrieval: From Tokenization To Vector Quantizati...

Optimizing Retrieval: From Tokenization To Vector Quantization - Brossura

 
9798306867977: Optimizing Retrieval: From Tokenization To Vector Quantization

Sinossi

"Optimizing Retrieval: From Tokenization to Vector Quantization"

This book provides a deep dive into the core techniques that underpin modern information retrieval systems. It guides readers through the crucial steps, starting with the fundamental process of tokenization – breaking down text into meaningful units. From there, the book explores how these tokens are transformed into numerical representations, a critical step for efficient processing.

The core of the book lies in vector quantization, a powerful technique that compresses and represents high-dimensional data (like text) into lower-dimensional spaces while preserving essential information. This enables faster search, reduced storage requirements, and improved retrieval accuracy.1

Key Topics Covered:

  • Tokenization Strategies: Exploring various approaches, including word-level, subword-level (like byte-pair encoding), and character-level tokenization.
  • Text Embedding Techniques: Delving into methods like Word2Vec, GloVe, and more recently, Transformer-based models like BERT, which capture semantic relationships between words.2
  • Vector Quantization Algorithms: Examining different approaches, such as k-means, product quantization, and hierarchical vector quantization, and their applications in information retrieval.
  • Retrieval Models: Exploring how vector quantization is integrated into various retrieval models, including nearest neighbor search, approximate nearest neighbor search, and retrieval augmented generation.
  • Practical Applications: Discussing real-world applications of these techniques, such as search engines, recommendation systems, and question answering systems.

"Optimizing Retrieval: From Tokenization to Vector Quantization" is a valuable resource for researchers, practitioners, and students interested in the cutting-edge techniques driving advancements in information retrieval. It provides a comprehensive understanding of the key concepts and their practical implications, empowering readers to build and optimize high-performance retrieval systems.

Le informazioni nella sezione "Riassunto" possono far riferimento a edizioni diverse di questo titolo.

  • EditoreIndependently published
  • Data di pubblicazione2025
  • ISBN 13 9798306867977
  • RilegaturaCopertina flessibile
  • LinguaInglese
  • Numero di pagine84
  • Contatto del produttorenon disponibile

EUR 7,80 per la spedizione da U.S.A. a Italia

Destinazione, tempi e costi

Risultati della ricerca per Optimizing Retrieval: From Tokenization To Vector Quantizati...

Foto dell'editore

Lucas Jr, Oliver
Editore: Independently published, 2025
ISBN 13: 9798306867977
Nuovo Brossura
Print on Demand

Da: California Books, Miami, FL, U.S.A.

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: New. Print on Demand. Codice articolo I-9798306867977

Contatta il venditore

Compra nuovo

EUR 17,86
Convertire valuta
Spese di spedizione: EUR 7,80
Da: U.S.A. a: Italia
Destinazione, tempi e costi

Quantità: Più di 20 disponibili

Aggiungi al carrello

Foto dell'editore

Lucas Jr, Oliver
Editore: Independently published, 2025
ISBN 13: 9798306867977
Nuovo Brossura

Da: Ria Christie Collections, Uxbridge, Regno Unito

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: New. In. Codice articolo ria9798306867977_new

Contatta il venditore

Compra nuovo

EUR 17,63
Convertire valuta
Spese di spedizione: EUR 10,56
Da: Regno Unito a: Italia
Destinazione, tempi e costi

Quantità: Più di 20 disponibili

Aggiungi al carrello

Foto dell'editore

Lucas Jr, Oliver
ISBN 13: 9798306867977
Nuovo Taschenbuch

Da: AHA-BUCH GmbH, Einbeck, Germania

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Taschenbuch. Condizione: Neu. Neuware - 'Optimizing Retrieval: From Tokenization to Vector Quantization'. Codice articolo 9798306867977

Contatta il venditore

Compra nuovo

EUR 26,00
Convertire valuta
Spese di spedizione: EUR 14,99
Da: Germania a: Italia
Destinazione, tempi e costi

Quantità: 2 disponibili

Aggiungi al carrello

Foto dell'editore

Oliver Lucas, Jr
Editore: Independently Published, 2025
ISBN 13: 9798306867977
Nuovo Paperback

Da: CitiRetail, Stevenage, Regno Unito

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Paperback. Condizione: new. Paperback. "Optimizing Retrieval: From Tokenization to Vector Quantization"This book provides a deep dive into the core techniques that underpin modern information retrieval systems. It guides readers through the crucial steps, starting with the fundamental process of tokenization - breaking down text into meaningful units. From there, the book explores how these tokens are transformed into numerical representations, a critical step for efficient processing.The core of the book lies in vector quantization, a powerful technique that compresses and represents high-dimensional data (like text) into lower-dimensional spaces while preserving essential information. This enables faster search, reduced storage requirements, and improved retrieval accuracy.1Key Topics Covered: Tokenization Strategies: Exploring various approaches, including word-level, subword-level (like byte-pair encoding), and character-level tokenization.Text Embedding Techniques: Delving into methods like Word2Vec, GloVe, and more recently, Transformer-based models like BERT, which capture semantic relationships between words.2Vector Quantization Algorithms: Examining different approaches, such as k-means, product quantization, and hierarchical vector quantization, and their applications in information retrieval.Retrieval Models: Exploring how vector quantization is integrated into various retrieval models, including nearest neighbor search, approximate nearest neighbor search, and retrieval augmented generation.Practical Applications: Discussing real-world applications of these techniques, such as search engines, recommendation systems, and question answering systems."Optimizing Retrieval: From Tokenization to Vector Quantization" is a valuable resource for researchers, practitioners, and students interested in the cutting-edge techniques driving advancements in information retrieval. It provides a comprehensive understanding of the key concepts and their practical implications, empowering readers to build and optimize high-performance retrieval systems. Shipping may be from our UK warehouse or from our Australian or US warehouses, depending on stock availability. Codice articolo 9798306867977

Contatta il venditore

Compra nuovo

EUR 22,36
Convertire valuta
Spese di spedizione: EUR 35,23
Da: Regno Unito a: Italia
Destinazione, tempi e costi

Quantità: 1 disponibili

Aggiungi al carrello

Foto dell'editore

Oliver Lucas, Jr
Editore: Independently Published, 2025
ISBN 13: 9798306867977
Nuovo Paperback

Da: Grand Eagle Retail, Fairfield, OH, U.S.A.

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Paperback. Condizione: new. Paperback. "Optimizing Retrieval: From Tokenization to Vector Quantization"This book provides a deep dive into the core techniques that underpin modern information retrieval systems. It guides readers through the crucial steps, starting with the fundamental process of tokenization - breaking down text into meaningful units. From there, the book explores how these tokens are transformed into numerical representations, a critical step for efficient processing.The core of the book lies in vector quantization, a powerful technique that compresses and represents high-dimensional data (like text) into lower-dimensional spaces while preserving essential information. This enables faster search, reduced storage requirements, and improved retrieval accuracy.1Key Topics Covered: Tokenization Strategies: Exploring various approaches, including word-level, subword-level (like byte-pair encoding), and character-level tokenization.Text Embedding Techniques: Delving into methods like Word2Vec, GloVe, and more recently, Transformer-based models like BERT, which capture semantic relationships between words.2Vector Quantization Algorithms: Examining different approaches, such as k-means, product quantization, and hierarchical vector quantization, and their applications in information retrieval.Retrieval Models: Exploring how vector quantization is integrated into various retrieval models, including nearest neighbor search, approximate nearest neighbor search, and retrieval augmented generation.Practical Applications: Discussing real-world applications of these techniques, such as search engines, recommendation systems, and question answering systems."Optimizing Retrieval: From Tokenization to Vector Quantization" is a valuable resource for researchers, practitioners, and students interested in the cutting-edge techniques driving advancements in information retrieval. It provides a comprehensive understanding of the key concepts and their practical implications, empowering readers to build and optimize high-performance retrieval systems. Shipping may be from multiple locations in the US or from the UK, depending on stock availability. Codice articolo 9798306867977

Contatta il venditore

Compra nuovo

EUR 19,60
Convertire valuta
Spese di spedizione: EUR 65,01
Da: U.S.A. a: Italia
Destinazione, tempi e costi

Quantità: 1 disponibili

Aggiungi al carrello