This book delves into the fusion of advanced mathematical concepts and cutting-edge deep learning techniques to transform algorithmic trading. By extending deep learning models into Hilbert spaces—complete infinite-dimensional spaces endowed with inner products—the book presents a novel framework for handling the complex, high-dimensional data inherent in financial markets. This approach opens new avenues for modeling and predicting market behaviors with greater accuracy and computational efficiency.
Main Topics:
Foundations of Hilbert Spaces in Financial Modeling: This section introduces the core principles of Hilbert spaces and their applicability to finance, explaining how infinite-dimensional spaces can model complex financial phenomena more effectively than traditional finite-dimensional methods.
Extending Deep Learning Architectures to Hilbert Spaces: Exploring how standard deep learning models like neural networks can be generalized to operate within Hilbert spaces, enabling the processing of functional data and continuous-time signals crucial for high-frequency trading.
Kernel Methods and Reproducing Kernel Hilbert Spaces (RKHS): Discussing the role of RKHS in enhancing machine learning models, particularly in capturing nonlinear relationships in financial data through kernel functions that map inputs into higher-dimensional Hilbert spaces.
Le informazioni nella sezione "Riassunto" possono far riferimento a edizioni diverse di questo titolo.
Da: Grand Eagle Retail, Bensenville, IL, U.S.A.
Paperback. Condizione: new. Paperback. This book delves into the fusion of advanced mathematical concepts and cutting-edge deep learning techniques to transform algorithmic trading. By extending deep learning models into Hilbert spaces-complete infinite-dimensional spaces endowed with inner products-the book presents a novel framework for handling the complex, high-dimensional data inherent in financial markets. This approach opens new avenues for modeling and predicting market behaviors with greater accuracy and computational efficiency. Main Topics: Foundations of Hilbert Spaces in Financial Modeling: This section introduces the core principles of Hilbert spaces and their applicability to finance, explaining how infinite-dimensional spaces can model complex financial phenomena more effectively than traditional finite-dimensional methods.Extending Deep Learning Architectures to Hilbert Spaces: Exploring how standard deep learning models like neural networks can be generalized to operate within Hilbert spaces, enabling the processing of functional data and continuous-time signals crucial for high-frequency trading.Kernel Methods and Reproducing Kernel Hilbert Spaces (RKHS): Discussing the role of RKHS in enhancing machine learning models, particularly in capturing nonlinear relationships in financial data through kernel functions that map inputs into higher-dimensional Hilbert spaces. This item is printed on demand. Shipping may be from multiple locations in the US or from the UK, depending on stock availability. Codice articolo 9798340304148
Quantità: 1 disponibili
Da: PBShop.store US, Wood Dale, IL, U.S.A.
PAP. Condizione: New. New Book. Shipped from UK. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000. Codice articolo L0-9798340304148
Quantità: Più di 20 disponibili
Da: PBShop.store UK, Fairford, GLOS, Regno Unito
PAP. Condizione: New. New Book. Delivered from our UK warehouse in 4 to 14 business days. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000. Codice articolo L0-9798340304148
Quantità: Più di 20 disponibili
Da: Ria Christie Collections, Uxbridge, Regno Unito
Condizione: New. In. Codice articolo ria9798340304148_new
Quantità: Più di 20 disponibili
Da: CitiRetail, Stevenage, Regno Unito
Paperback. Condizione: new. Paperback. This book delves into the fusion of advanced mathematical concepts and cutting-edge deep learning techniques to transform algorithmic trading. By extending deep learning models into Hilbert spaces-complete infinite-dimensional spaces endowed with inner products-the book presents a novel framework for handling the complex, high-dimensional data inherent in financial markets. This approach opens new avenues for modeling and predicting market behaviors with greater accuracy and computational efficiency. Main Topics: Foundations of Hilbert Spaces in Financial Modeling: This section introduces the core principles of Hilbert spaces and their applicability to finance, explaining how infinite-dimensional spaces can model complex financial phenomena more effectively than traditional finite-dimensional methods.Extending Deep Learning Architectures to Hilbert Spaces: Exploring how standard deep learning models like neural networks can be generalized to operate within Hilbert spaces, enabling the processing of functional data and continuous-time signals crucial for high-frequency trading.Kernel Methods and Reproducing Kernel Hilbert Spaces (RKHS): Discussing the role of RKHS in enhancing machine learning models, particularly in capturing nonlinear relationships in financial data through kernel functions that map inputs into higher-dimensional Hilbert spaces. This item is printed on demand. Shipping may be from our UK warehouse or from our Australian or US warehouses, depending on stock availability. Codice articolo 9798340304148
Quantità: 1 disponibili
Da: AHA-BUCH GmbH, Einbeck, Germania
Taschenbuch. Condizione: Neu. Neuware. Codice articolo 9798340304148
Quantità: 2 disponibili