Algorithms for Reinforcement Learning (Synthesis Lectures on Artificial Intelligence and Machine Learning)

Szepesvári, Csaba

ISBN 10: 303100423X ISBN 13: 9783031004230
Editore: Springer, 2010
Nuovi Brossura

Da Ria Christie Collections, Uxbridge, Regno Unito Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Venditore AbeBooks dal 25 marzo 2015

Questo articolo specifico non è più disponibile.

Riguardo questo articolo

Descrizione:

In English. Codice articolo ria9783031004230_new

Segnala questo articolo

Riassunto:

Reinforcement learning is a learning paradigm concerned with learning to control a system so as to maximize a numerical performance measure that expresses a long-term objective. What distinguishes reinforcement learning from supervised learning is that only partial feedback is given to the learner about the learner's predictions. Further, the predictions may have long term effects through influencing the future state of the controlled system. Thus, time plays a special role. The goal in reinforcement learning is to develop efficient learning algorithms, as well as to understand the algorithms' merits and limitations. Reinforcement learning is of great interest because of the large number of practical applications that it can be used to address, ranging from problems in artificial intelligence to operations research or control engineering. In this book, we focus on those algorithms of reinforcement learning that build on the powerful theory of dynamic programming. We give a fairly comprehensive catalog of learning problems, describe the core ideas, note a large number of state of the art algorithms, followed by the discussion of their theoretical properties and limitations. Table of Contents: Markov Decision Processes / Value Prediction Problems / Control / For Further Exploration

Informazioni sull?autore: Csaba Szepesvári received his PhD in 1999 from "Jozsef Attila" University, Szeged, Hungary. He is currently an Associate Professor at the Department of Computing Science of the University of Alberta and a principal investigator of the Alberta Ingenuity Center for Machine Learning. Previously, he held a senior researcher position at the Computer and Automation Research Institute of the Hungarian Academy of Sciences, where he headed the Machine Learning Group. Before that, he spent 5 years in the software industry. In 1998, he became the Research Director of Mindmaker, Ltd., working on natural language processing and speech products, while from 2000, he became the Vice President of Research at the Silicon Valley company Mindmaker Inc. He is the coauthor of a book on nonlinear approximate adaptive controllers, published over 80 journal and conference papers and serves as the Associate Editor of IEEE Transactions on Adaptive Control and AI Communications, is on the board of editors of theJournal of Machine Learning Research and the Machine Learning Journal, and is a regular member of the program committee at various machine learning and AI conferences. His areas of expertise include statistical learning theory, reinforcement learning and nonlinear adaptive control.

Le informazioni nella sezione "Su questo libro" possono far riferimento a edizioni diverse di questo titolo.

Dati bibliografici

Titolo: Algorithms for Reinforcement Learning (...
Casa editrice: Springer
Data di pubblicazione: 2010
Legatura: Brossura
Condizione: New

I migliori risultati di ricerca su AbeBooks

Immagini fornite dal venditore

Szepesvári, Csaba
ISBN 10: 303100423X ISBN 13: 9783031004230
Nuovo Kartoniert / Broschiert
Print on Demand

Da: moluna, Greven, Germania

Valutazione del venditore 4 su 5 stelle 4 stelle, Maggiori informazioni sulle valutazioni dei venditori

Kartoniert / Broschiert. Condizione: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Reinforcement learning is a learning paradigm concerned with learning to control a system so as to maximize a numerical performance measure that expresses a long-term objective. What distinguishes reinforcement learning from supervised learning is that only. Codice articolo 608128852

Contatta il venditore

Compra nuovo

EUR 30,14
EUR 48,99 shipping
Spedito da Germania a U.S.A.

Quantità: Più di 20 disponibili

Aggiungi al carrello

Foto dell'editore

Szepesv�ri, Csaba
Editore: Springer 2010-07, 2010
ISBN 10: 303100423X ISBN 13: 9783031004230
Nuovo PF

Da: Chiron Media, Wallingford, Regno Unito

Valutazione del venditore 4 su 5 stelle 4 stelle, Maggiori informazioni sulle valutazioni dei venditori

PF. Condizione: New. Codice articolo 6666-IUK-9783031004230

Contatta il venditore

Compra nuovo

EUR 31,06
EUR 17,64 shipping
Spedito da Regno Unito a U.S.A.

Quantità: 10 disponibili

Aggiungi al carrello

Foto dell'editore

Szepesvári, Csaba
Editore: Springer, 2010
ISBN 10: 303100423X ISBN 13: 9783031004230
Nuovo Brossura
Print on Demand

Da: Majestic Books, Hounslow, Regno Unito

Valutazione del venditore 4 su 5 stelle 4 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: New. This item is printed on demand. Codice articolo 402364178

Contatta il venditore

Compra nuovo

EUR 31,20
EUR 7,40 shipping
Spedito da Regno Unito a U.S.A.

Quantità: 1 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

Csaba Szepesvári
ISBN 10: 303100423X ISBN 13: 9783031004230
Nuovo Taschenbuch

Da: preigu, Osnabrück, Germania

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Taschenbuch. Condizione: Neu. Algorithms for Reinforcement Learning | Csaba Szepesvári | Taschenbuch | xiii | Englisch | 2010 | Springer Nature Switzerland | EAN 9783031004230 | Verantwortliche Person für die EU: Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg, juergen[dot]hartmann[at]springer[dot]com | Anbieter: preigu. Codice articolo 121974924

Contatta il venditore

Compra nuovo

EUR 31,45
EUR 70,00 shipping
Spedito da Germania a U.S.A.

Quantità: 5 disponibili

Aggiungi al carrello

Foto dell'editore

Szepesvári, Csaba
Editore: Springer, 2010
ISBN 10: 303100423X ISBN 13: 9783031004230
Nuovo Brossura

Da: Lucky's Textbooks, Dallas, TX, U.S.A.

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: New. Codice articolo ABLIING23Mar3113020034765

Contatta il venditore

Compra nuovo

EUR 31,92
EUR 3,40 shipping
Spedito in U.S.A.

Quantità: Più di 20 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

Csaba Szepesvári
ISBN 10: 303100423X ISBN 13: 9783031004230
Nuovo Taschenbuch

Da: buchversandmimpf2000, Emtmannsberg, BAYE, Germania

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Taschenbuch. Condizione: Neu. Neuware -Reinforcement learning is a learning paradigm concerned with learning to control a system so as to maximize a numerical performance measure that expresses a long-term objective. What distinguishes reinforcement learning from supervised learning is that only partial feedback is given to the learner about the learner's predictions. Further, the predictions may have long term effects through influencing the future state of the controlled system. Thus, time plays a special role. The goal in reinforcement learning is to develop efficient learning algorithms, as well as to understand the algorithms' merits and limitations. Reinforcement learning is of great interest because of the large number of practical applications that it can be used to address, ranging from problems in artificial intelligence to operations research or control engineering. In this book, we focus on those algorithms of reinforcement learning that build on the powerful theory of dynamic programming. We give a fairly comprehensive catalog of learning problems, describe the core ideas, note a large number of state of the art algorithms, followed by the discussion of their theoretical properties and limitations. Table of Contents: Markov Decision Processes / Value Prediction Problems / Control / For Further ExplorationSpringer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 104 pp. Englisch. Codice articolo 9783031004230

Contatta il venditore

Compra nuovo

EUR 32,09
EUR 60,00 shipping
Spedito da Germania a U.S.A.

Quantità: 2 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

Csaba Szepesvári
ISBN 10: 303100423X ISBN 13: 9783031004230
Nuovo Taschenbuch
Print on Demand

Da: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germania

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Taschenbuch. Condizione: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Reinforcement learning is a learning paradigm concerned with learning to control a system so as to maximize a numerical performance measure that expresses a long-term objective. What distinguishes reinforcement learning from supervised learning is that only partial feedback is given to the learner about the learner's predictions. Further, the predictions may have long term effects through influencing the future state of the controlled system. Thus, time plays a special role. The goal in reinforcement learning is to develop efficient learning algorithms, as well as to understand the algorithms' merits and limitations. Reinforcement learning is of great interest because of the large number of practical applications that it can be used to address, ranging from problems in artificial intelligence to operations research or control engineering. In this book, we focus on those algorithms of reinforcement learning that build on the powerful theory of dynamic programming. We give a fairly comprehensive catalog of learning problems, describe the core ideas, note a large number of state of the art algorithms, followed by the discussion of their theoretical properties and limitations. Table of Contents: Markov Decision Processes / Value Prediction Problems / Control / For Further Exploration 104 pp. Englisch. Codice articolo 9783031004230

Contatta il venditore

Compra nuovo

EUR 32,09
EUR 23,00 shipping
Spedito da Germania a U.S.A.

Quantità: 2 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

Csaba Szepesvári
ISBN 10: 303100423X ISBN 13: 9783031004230
Nuovo Taschenbuch

Da: AHA-BUCH GmbH, Einbeck, Germania

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Taschenbuch. Condizione: Neu. Druck auf Anfrage Neuware - Printed after ordering - Reinforcement learning is a learning paradigm concerned with learning to control a system so as to maximize a numerical performance measure that expresses a long-term objective. What distinguishes reinforcement learning from supervised learning is that only partial feedback is given to the learner about the learner's predictions. Further, the predictions may have long term effects through influencing the future state of the controlled system. Thus, time plays a special role. The goal in reinforcement learning is to develop efficient learning algorithms, as well as to understand the algorithms' merits and limitations. Reinforcement learning is of great interest because of the large number of practical applications that it can be used to address, ranging from problems in artificial intelligence to operations research or control engineering. In this book, we focus on those algorithms of reinforcement learning that build on the powerful theory of dynamic programming. We give a fairly comprehensive catalog of learning problems, describe the core ideas, note a large number of state of the art algorithms, followed by the discussion of their theoretical properties and limitations. Table of Contents: Markov Decision Processes / Value Prediction Problems / Control / For Further Exploration. Codice articolo 9783031004230

Contatta il venditore

Compra nuovo

EUR 32,09
EUR 61,06 shipping
Spedito da Germania a U.S.A.

Quantità: 1 disponibili

Aggiungi al carrello

Foto dell'editore

Szepesvári, Csaba
Editore: Springer, 2010
ISBN 10: 303100423X ISBN 13: 9783031004230
Nuovo Brossura

Da: Books Puddle, New York, NY, U.S.A.

Valutazione del venditore 4 su 5 stelle 4 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: New. Codice articolo 26395061453

Contatta il venditore

Compra nuovo

EUR 32,11
EUR 3,40 shipping
Spedito in U.S.A.

Quantità: 1 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

Grossi, Csaba
Editore: Springer, 2010
ISBN 10: 303100423X ISBN 13: 9783031004230
Nuovo Brossura

Da: GreatBookPrices, Columbia, MD, U.S.A.

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: New. Codice articolo 44569064-n

Contatta il venditore

Compra nuovo

EUR 32,43
EUR 2,25 shipping
Spedito in U.S.A.

Quantità: Più di 20 disponibili

Aggiungi al carrello

Vedi altre 12 copie di questo libro

Vedi tutti i risultati per questo libro