Deep Learning for Crack-Like Object Detection
Kaige Zhang
Venduto da THE SAINT BOOKSTORE, Southport, Regno Unito
Venditore AbeBooks dal 14 giugno 2006
Nuovi - Rilegato
Condizione: Nuovo
Quantità: 1 disponibili
Aggiungere al carrelloVenduto da THE SAINT BOOKSTORE, Southport, Regno Unito
Venditore AbeBooks dal 14 giugno 2006
Condizione: Nuovo
Quantità: 1 disponibili
Aggiungere al carrelloNew copy - Usually dispatched within 4 working days. 166.
Codice articolo B9781032181189
Computer vision-based crack-like object detection has many useful applications, such as inspecting/monitoring pavement surface, underground pipeline, bridge cracks, railway tracks etc. However, in most contexts, cracks appear as thin, irregular long-narrow objects, and often are buried in complex, textured background with high diversity which make the crack detection very challenging. During the past a few years, deep learning technique has achieved great success and has been utilized for solving a variety of object detection problems.
This book discusses crack-like object detection problem comprehensively. It starts by discussing traditional image processing approaches for solving this problem, and then introduces deep learning-based methods. It provides a detailed review of object detection problems and focuses on the most challenging problem, crack-like object detection, to dig deep into the deep learning method. It includes examples of real-world problems, which are easy to understand and could be a good tutorial for introducing computer vision and machine learning.
Kaige Zhang has a B.S. degree (2011) in electronic engineering from the Harbin Institute of Technology, China, and a Ph.D. degree (2019) in computer science from Utah State University, USA. His research interests include computer vision, machine learning, and the applications on intelligent transportation systems, precision agriculture, and biomedical data analytics. Dr. Zhang has been the reviewer for many top journals in his research areas, such as IEEE Transactions on ITS, IEEE Trans. On T-IV, J. of Comput. in Civil Eng., Scientific Report, etc.
Heng-Da Cheng has a Ph.D. in Electrical Engineering from Purdue University, West Lafayette, IN, USA in 1985 under the supervision Prof. K. S. Fu. He is a Full Professor with the Department of Computer Science, Utah State University, Logan, UT. He has authored over 350 technical papers and is the Associate Editor of Pattern Recognition, Information Sciences, and New Mathematics and Natural Computation.
Le informazioni nella sezione "Su questo libro" possono far riferimento a edizioni diverse di questo titolo.
Visita la pagina della libreria
Please order through the Abebooks checkout. We only take orders through Abebooks - We don't take direct orders by email or phone.
Refunds or Returns: A full refund of the purchase price will be given if returned within 30 days in undamaged condition.
As a seller on abebooks we adhere to the terms explained at http://www.abebooks.co.uk/docs/HelpCentral/buyerIndex.shtml - if you require further assistance please email us at orders@thesaintbookstore.co.uk
Most orders usually ship within 1-3 business days, but some can take up to 7 days.
Quantità dell?ordine | Da 7 a 21 giorni lavorativi | Da 7 a 21 giorni lavorativi |
---|---|---|
Primo articolo | EUR 6.69 | EUR 6.69 |
I tempi di consegna sono stabiliti dai venditori e variano in base al corriere e al paese. Gli ordini che devono attraversare una dogana possono subire ritardi e spetta agli acquirenti pagare eventuali tariffe o dazi associati. I venditori possono contattarti in merito ad addebiti aggiuntivi dovuti a eventuali maggiorazioni dei costi di spedizione dei tuoi articoli.