Foto dell'editore

Evaluation of Statistical Matching and Selected SAE Methods

Verena Puchner

0 valutazioni da GoodReads
ISBN 10: 3658082232 / ISBN 13: 9783658082239
Editore: Betriebswirt.-Vlg Gabler Dez 2014, 2014
Nuovi Condizione: Neu Taschenbuch
Da Rhein-Team Lörrach Ivano Narducci e.K. (Lörrach, Germania)

Libreria AbeBooks dal 11 gennaio 2012

Valutazione Libreria 5 stelle

Quantità: 1

Offerto da altre Librerie

Mostra tutte le  copie di questo libro
Compra nuovo
Prezzo consigliato:
Prezzo: EUR 69,99 Convertire valuta
Spedizione: EUR 12,00 Da: Germania a: U.S.A. Destinazione, tempi e costi
Aggiungere al carrello

Metodi di pagamento
accettati dalla libreria

Visa Mastercard American Express Carte Bleue

Assegno PayPal

Riguardo questo articolo

Neuware - Verena Puchner evaluates and compares statistical matching and selected SAE methods. Due to the fact that poverty estimation at regional level based on EU-SILC samples is not of adequate accuracy, the quality of the estimations should be improved by additionally incorporating micro census data. The aim is to find the best method for the estimation of poverty in terms of small bias and small variance with the aid of a simulated artificial 'close-to-reality' population. Variables of interest are imputed into the micro census data sets with the help of the EU-SILC samples through regression models including selected unit-level small area methods and statistical matching methods. Poverty indicators are then estimated. The author evaluates and compares the bias and variance for the direct estimator and the various methods. The variance is desired to be reduced by the larger sample size of the micro census. 101 pp. Englisch. Codice inventario libreria 9783658082239

Fare una domanda alla libreria

Dati bibliografici

Titolo: Evaluation of Statistical Matching and ...

Casa editrice: Betriebswirt.-Vlg Gabler Dez 2014

Data di pubblicazione: 2014

Legatura: Taschenbuch

Condizione libro:Neu

Descrizione articolo

Riassunto:

Verena Puchner evaluates and compares statistical matching and selected SAE methods. Due to the fact that poverty estimation at regional level based on EU-SILC samples is not of adequate accuracy, the quality of the estimations should be improved by additionally incorporating micro census data. The aim is to find the best method for the estimation of poverty in terms of small bias and small variance with the aid of a simulated artificial "close-to-reality" population. Variables of interest are imputed into the micro census data sets with the help of the EU-SILC samples through regression models including selected unit-level small area methods and statistical matching methods. Poverty indicators are then estimated. The author evaluates and compares the bias and variance for the direct estimator and the various methods. The variance is desired to be reduced by the larger sample size of the micro census.

L'autore:

Verena Puchner obtained her master?s degree at Technical University of Vienna under the supervision of Priv.-Doz. Dipl.-Ing. Dr. techn. Matthias Templ. At present, she works as a data miner and consultant.

Le informazioni nella sezione "Su questo libro" possono far riferimento a edizioni diverse di questo titolo.