Introduction to Shape Optimization: Shape Sensitivity Analysis (Springer Series in Computational Mathematics)

Sokolowski, Jan; Zolesio, Jean-Paul

ISBN 10: 3642634710 ISBN 13: 9783642634710
Editore: Springer, 2012
Nuovi Brossura

Da Ria Christie Collections, Uxbridge, Regno Unito Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Venditore AbeBooks dal 25 marzo 2015

Questo articolo specifico non è più disponibile.

Riguardo questo articolo

Descrizione:

In. Codice articolo ria9783642634710_new

Segnala questo articolo

Riassunto:

Shape Optimization is a classical field of the calculus of variations, optimal control theory and structural optimization. In this book the authors discuss the shape calculus introduced by J. Hadamard and extend it to a broad class of free boundary value problems. The approach is functional analytic throughout and will serve as an excellent basis for the development of numerical algorithms for the solution of shape optimization problems.

Contenuti: 1 Introduction to shape optimization.- 1.1. Preface.- 2 Preliminaries and the material derivative method.- 2.1. Domains in ?N of class Ck.- Surface measures on ?.- 2.3. Functional spaces.- 2.4. Linear elliptic boundary value problems.- 2.5. Shape functionals.- 2.6. Shape functionals for problems governed by linear elliptic boundary value problems.- 2.6.1. Shape functionals for transmission problems.- 2.6.2. Approximation of homogenuous Dirichlet problems.- 2.7. Convergence of domains.- 2.8. Transformations Tt of domains.- 2.9. The speed method.- 2.10. Admissible speed vector fields Vk(D).- 2.11. Eulerian derivatives of shape functionals.- 2.12. Non-differentiable shape functionals.- 2.13. Properties of Tt transformations.- 2.14. Differentiability of transported functions.- 2.15. Derivatives for t > 0.- 2.16. Derivatives of domain integrals.- 2.17. Change of variables in boundary integrals.- 2.18. Derivatives of boundary integrals.- 2.19. The tangential divergence of the field V on ?.- 2.20. Tangential gradients and Laplace―Beltrami operators on ?.- 2.21. Variational problems on ?.- 2.22. The transport of differential operators.- 2.23. Integration by parts on ?.- 2.24. The transport of Laplace―Beltrami operators.- 2.25. Material derivatives.- 2.26. Material derivatives on ?.- 2.27. The material derivative of a solution to the Laplace equation with Dirichlet boundary conditions.- 2.28. Strong material derivatives for Dirichlet problems.- 2.29. The material derivative of a solution to the Laplace equation with Neumann boundary conditions.- 2.30. Shape derivatives.- 2.31. Derivatives of domain integrals (II).- 2.32. Shape derivatives on ?.- 2.33. Derivatives of boundary integrals.- 3 Shape derivatives for linear problems.- 3.1. The shape derivative for the Dirichlet boundary value problem.- 3.2. The shape derivative for the Neumann boundary value problem.- 3.3. Necessary optimality conditions.- 3.4. Parabolic equations.- 3.4.1 Neumann boundary conditions.- 3.4.2 Dirichlet boundary conditions.- 3.5. Shape sensitivity in elasticity.- 3.6. Shape sensitivity analysis of the smallest eigenvalue.- 3.7. Shape sensitivity analysis of the Kirchhoff plate.- 3.8. Shape derivatives of boundary integrals: the non-smooth case in ?2.- 3.9. Shape sensitivity analysis of boundary value problems with singularities.- 3.10. Hyperbolic initial boundary value problems.- 4 Shape sensitivity analysis of variational inequalities.- 4.1. Differential stability of the metric projection in Hilbert spaces.- 4.2. Sensitivity analysis of variational inequalities in Hilbert spaces.- 4.3. The obstacle problem in H1 (?).- 4.3.1. Differentiability of the Newtonian capacity.- 4.3.2. The shape controlability of the free boundary.- 4.4. The Signorini problem.- 4.5. Variational inequalities of the second kind.- 4.6. Sensitivity analysis of the Signorini problem in elasticity.- 4.6.1. Differential stability of solutions to variational inequalities in Hilbert spaces.- 4.6.2. Shape sensitivity analysis.- 4.7. The Signorini problem with given friction.- 4.7.1. Shape sensitivity analysis.- 4.8. Elasto―Plastic torsion problems.- 4.9. Elasto―Visco―Plastic problems.- References.

Le informazioni nella sezione "Su questo libro" possono far riferimento a edizioni diverse di questo titolo.

Dati bibliografici

Titolo: Introduction to Shape Optimization: Shape ...
Casa editrice: Springer
Data di pubblicazione: 2012
Legatura: Brossura
Condizione: New

I migliori risultati di ricerca su AbeBooks

Immagini fornite dal venditore

Jan Sokolowski|Jean-Paul Zolesio
ISBN 10: 3642634710 ISBN 13: 9783642634710
Nuovo Brossura

Da: moluna, Greven, Germania

Valutazione del venditore 4 su 5 stelle 4 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: New. Codice articolo 5065772

Contatta il venditore

Compra nuovo

EUR 70,33
EUR 48,99 shipping
Spedito da Germania a U.S.A.

Quantità: Più di 20 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

Jan Sokolowski (u. a.)
Editore: Springer, 2012
ISBN 10: 3642634710 ISBN 13: 9783642634710
Nuovo Taschenbuch

Da: preigu, Osnabrück, Germania

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Taschenbuch. Condizione: Neu. Introduction to Shape Optimization | Shape Sensitivity Analysis | Jan Sokolowski (u. a.) | Taschenbuch | IV | Englisch | 2012 | Springer | EAN 9783642634710 | Verantwortliche Person für die EU: Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg, juergen[dot]hartmann[at]springer[dot]com | Anbieter: preigu. Codice articolo 105986073

Contatta il venditore

Compra nuovo

EUR 73,05
EUR 70,00 shipping
Spedito da Germania a U.S.A.

Quantità: 5 disponibili

Aggiungi al carrello

Foto dell'editore

Jan Sokolowski
Editore: Springer 1992-06-18, 1992
ISBN 10: 3642634710 ISBN 13: 9783642634710
Nuovo Paperback

Da: Chiron Media, Wallingford, Regno Unito

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Paperback. Condizione: New. Codice articolo 6666-IUK-9783642634710

Contatta il venditore

Compra nuovo

EUR 74,52
EUR 17,68 shipping
Spedito da Regno Unito a U.S.A.

Quantità: 10 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

Sokolowski, Jan; Zolesio, Jean-Paul
Editore: Springer, 2012
ISBN 10: 3642634710 ISBN 13: 9783642634710
Nuovo Brossura

Da: GreatBookPricesUK, Woodford Green, Regno Unito

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: New. Codice articolo 19494977-n

Contatta il venditore

Compra nuovo

EUR 77,44
EUR 17,12 shipping
Spedito da Regno Unito a U.S.A.

Quantità: Più di 20 disponibili

Aggiungi al carrello

Foto dell'editore

Sokolowski, Jan; Zolesio, Jean-Paul
Editore: Springer, 2012
ISBN 10: 3642634710 ISBN 13: 9783642634710
Nuovo Brossura

Da: Lucky's Textbooks, Dallas, TX, U.S.A.

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: New. Codice articolo ABLIING23Mar3113020232040

Contatta il venditore

Compra nuovo

EUR 79,56
EUR 3,40 shipping
Spedito in U.S.A.

Quantità: Più di 20 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

Jean-Paul Zolesio
ISBN 10: 3642634710 ISBN 13: 9783642634710
Nuovo Taschenbuch

Da: AHA-BUCH GmbH, Einbeck, Germania

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Taschenbuch. Condizione: Neu. Druck auf Anfrage Neuware - Printed after ordering - This book is motivated largely by a desire to solve shape optimization prob lems that arise in applications, particularly in structural mechanics and in the optimal control of distributed parameter systems. Many such problems can be formulated as the minimization of functionals defined over a class of admissible domains. Shape optimization is quite indispensable in the design and construction of industrial structures. For example, aircraft and spacecraft have to satisfy, at the same time, very strict criteria on mechanical performance while weighing as little as possible. The shape optimization problem for such a structure consists in finding a geometry of the structure which minimizes a given functional (e. g. such as the weight of the structure) and yet simultaneously satisfies specific constraints (like thickness, strain energy, or displacement bounds). The geometry of the structure can be considered as a given domain in the three-dimensional Euclidean space. The domain is an open, bounded set whose topology is given, e. g. it may be simply or doubly connected. The boundary is smooth or piecewise smooth, so boundary value problems that are defined in the domain and associated with the classical partial differential equations of mathematical physics are well posed. In general the cost functional takes the form of an integral over the domain or its boundary where the integrand depends smoothly on the solution of a boundary value problem. Codice articolo 9783642634710

Contatta il venditore

Compra nuovo

EUR 80,24
EUR 62,00 shipping
Spedito da Germania a U.S.A.

Quantità: 1 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

Jean-Paul Zolesio
ISBN 10: 3642634710 ISBN 13: 9783642634710
Nuovo Taschenbuch
Print on Demand

Da: buchversandmimpf2000, Emtmannsberg, BAYE, Germania

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Taschenbuch. Condizione: Neu. This item is printed on demand - Print on Demand Titel. Neuware -This book is motivated largely by a desire to solve shape optimization prob lems that arise in applications, particularly in structural mechanics and in the optimal control of distributed parameter systems. Many such problems can be formulated as the minimization of functionals defined over a class of admissible domains. Shape optimization is quite indispensable in the design and construction of industrial structures. For example, aircraft and spacecraft have to satisfy, at the same time, very strict criteria on mechanical performance while weighing as little as possible. The shape optimization problem for such a structure consists in finding a geometry of the structure which minimizes a given functional (e. g. such as the weight of the structure) and yet simultaneously satisfies specific constraints (like thickness, strain energy, or displacement bounds). The geometry of the structure can be considered as a given domain in the three-dimensional Euclidean space. The domain is an open, bounded set whose topology is given, e. g. it may be simply or doubly connected. The boundary is smooth or piecewise smooth, so boundary value problems that are defined in the domain and associated with the classical partial differential equations of mathematical physics are well posed. In general the cost functional takes the form of an integral over the domain or its boundary where the integrand depends smoothly on the solution of a boundary value problem.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 260 pp. Englisch. Codice articolo 9783642634710

Contatta il venditore

Compra nuovo

EUR 80,24
EUR 60,00 shipping
Spedito da Germania a U.S.A.

Quantità: 1 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

Jean-Paul Zolesio
ISBN 10: 3642634710 ISBN 13: 9783642634710
Nuovo Taschenbuch
Print on Demand

Da: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germania

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Taschenbuch. Condizione: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -This book is motivated largely by a desire to solve shape optimization prob lems that arise in applications, particularly in structural mechanics and in the optimal control of distributed parameter systems. Many such problems can be formulated as the minimization of functionals defined over a class of admissible domains. Shape optimization is quite indispensable in the design and construction of industrial structures. For example, aircraft and spacecraft have to satisfy, at the same time, very strict criteria on mechanical performance while weighing as little as possible. The shape optimization problem for such a structure consists in finding a geometry of the structure which minimizes a given functional (e. g. such as the weight of the structure) and yet simultaneously satisfies specific constraints (like thickness, strain energy, or displacement bounds). The geometry of the structure can be considered as a given domain in the three-dimensional Euclidean space. The domain is an open, bounded set whose topology is given, e. g. it may be simply or doubly connected. The boundary is smooth or piecewise smooth, so boundary value problems that are defined in the domain and associated with the classical partial differential equations of mathematical physics are well posed. In general the cost functional takes the form of an integral over the domain or its boundary where the integrand depends smoothly on the solution of a boundary value problem. 260 pp. Englisch. Codice articolo 9783642634710

Contatta il venditore

Compra nuovo

EUR 80,24
EUR 23,00 shipping
Spedito da Germania a U.S.A.

Quantità: 2 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

Sokolowski, Jan; Zolesio, Jean-Paul
Editore: Springer, 2012
ISBN 10: 3642634710 ISBN 13: 9783642634710
Nuovo Brossura

Da: GreatBookPrices, Columbia, MD, U.S.A.

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: New. Codice articolo 19494977-n

Contatta il venditore

Compra nuovo

EUR 80,74
EUR 2,25 shipping
Spedito in U.S.A.

Quantità: Più di 20 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

Sokolowski, Jan; Zolesio, Jean-Paul
Editore: Springer, 2012
ISBN 10: 3642634710 ISBN 13: 9783642634710
Antico o usato Brossura

Da: GreatBookPrices, Columbia, MD, U.S.A.

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: As New. Unread book in perfect condition. Codice articolo 19494977

Contatta il venditore

Compra usato

EUR 82,47
EUR 2,25 shipping
Spedito in U.S.A.

Quantità: Più di 20 disponibili

Aggiungi al carrello

Vedi altre 1 copie di questo libro

Vedi tutti i risultati per questo libro