Sparse Polynomial Optimization: Theory And Practice (Series On Optimization And Its Applications)

Magron, Victor; Wang, Jie

ISBN 10: 180061294X ISBN 13: 9781800612945
Editore: WSPC (EUROPE), 2023
Nuovi Rilegato

Da Ria Christie Collections, Uxbridge, Regno Unito Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Venditore AbeBooks dal 25 marzo 2015

Questo articolo specifico non è più disponibile.

Riguardo questo articolo

Descrizione:

In. Codice articolo ria9781800612945_new

Segnala questo articolo

Riassunto:

Many applications, including computer vision, computer arithmetic, deep learning, entanglement in quantum information, graph theory and energy networks, can be successfully tackled within the framework of polynomial optimization, an emerging field with growing research efforts in the last two decades. One key advantage of these techniques is their ability to model a wide range of problems using optimization formulations. Polynomial optimization heavily relies on the moment-sums of squares (moment-SOS) approach proposed by Lasserre, which provides certificates for positive polynomials. On the practical side, however, there is "no free lunch" and such optimization methods usually encompass severe scalability issues. Fortunately, for many applications, including the ones formerly mentioned, we can look at the problem in the eyes and exploit the inherent data structure arising from the cost and constraints describing the problem. This book presents several research efforts to resolve this scientific challenge with important computational implications. It provides the development of alternative optimization schemes that scale well in terms of computational complexity, at least in some identified class of problems. It also features a unified modeling framework to handle a wide range of applications involving both commutative and noncommutative variables, and to solve concretely large-scale instances. Readers will find a practical section dedicated to the use of available open-source software libraries. This interdisciplinary monograph is essential reading for students, researchers and professionals interested in solving optimization problems with polynomial input data.

Informazioni sull?autore:

Victor Magron is a full-time researcher at CNRS-LAAS, France, working in the MAC team. He completed his PhD in computer science in 2013 at Ecole Polytechnique, INRIA-Saclay, and defended his habilitation thesis in 2021. In 2014, he was a postdoc in the MAC team. In 2014–2015, he was a research associate in the Circuits and Systems group at Imperial College. From 2015 to 2018, he was a CNRS junior researcher affiliated to the Tempo team at Verimag in Grenoble. In 2018, he visited the joint INRIA-CNRS-Sorbonne Université PolSys team at LIP6 in Paris Jussieu. His research is devoted to applications of certified polynomial optimization to deep learning, quantum and power systems. He has published 50 peer-reviewed articles.

Jie Wang is an associate research fellow at Academy of Mathematics and Systems Science, Chinese Academy of Sciences (CAS), China. He completed his PhD in mathematics in 2017 at Academy of Mathematics and Systems Science, CAS. In 2017–2019, he was a postdoc at Peking University. In 2019–2021, he was a postdoctoral researcher at CNRS-LAAS. He works in the areas of polynomial optimization, semidefinite programming, real algebraic geometry, symbolic computation and their applications in control, quantum information, computer vision and so on. He has published 20 peer-reviewed articles.

Le informazioni nella sezione "Su questo libro" possono far riferimento a edizioni diverse di questo titolo.

Dati bibliografici

Titolo: Sparse Polynomial Optimization: Theory And ...
Casa editrice: WSPC (EUROPE)
Data di pubblicazione: 2023
Legatura: Rilegato
Condizione: New

I migliori risultati di ricerca su AbeBooks

Foto dell'editore

Magron, Victor; Wang, Jie
Editore: WSPC (EUROPE), 2023
ISBN 10: 180061294X ISBN 13: 9781800612945
Nuovo Rilegato

Da: California Books, Miami, FL, U.S.A.

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: New. Codice articolo I-9781800612945

Contatta il venditore

Compra nuovo

EUR 92,98
Spedizione gratuita
Spedito in U.S.A.

Quantità: Più di 20 disponibili

Aggiungi al carrello

Foto dell'editore

Victor Magron
ISBN 10: 180061294X ISBN 13: 9781800612945
Nuovo Rilegato

Da: THE SAINT BOOKSTORE, Southport, Regno Unito

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Hardback. Condizione: New. New copy - Usually dispatched within 4 working days. Codice articolo B9781800612945

Contatta il venditore

Compra nuovo

EUR 99,86
EUR 18,23 shipping
Spedito da Regno Unito a U.S.A.

Quantità: 19 disponibili

Aggiungi al carrello

Foto dell'editore

Victor Magron
ISBN 10: 180061294X ISBN 13: 9781800612945
Nuovo Rilegato
Print on Demand

Da: THE SAINT BOOKSTORE, Southport, Regno Unito

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Hardback. Condizione: New. This item is printed on demand. New copy - Usually dispatched within 5-9 working days. Codice articolo C9781800612945

Contatta il venditore

Compra nuovo

EUR 103,71
EUR 17,94 shipping
Spedito da Regno Unito a U.S.A.

Quantità: Più di 20 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

Victor Magron, Jie Wang
ISBN 10: 180061294X ISBN 13: 9781800612945
Nuovo Rilegato

Da: Rarewaves.com UK, London, Regno Unito

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Hardback. Condizione: New. Many applications, including computer vision, computer arithmetic, deep learning, entanglement in quantum information, graph theory and energy networks, can be successfully tackled within the framework of polynomial optimization, an emerging field with growing research efforts in the last two decades. One key advantage of these techniques is their ability to model a wide range of problems using optimization formulations. Polynomial optimization heavily relies on the moment-sums of squares (moment-SOS) approach proposed by Lasserre, which provides certificates for positive polynomials. On the practical side, however, there is 'no free lunch' and such optimization methods usually encompass severe scalability issues. Fortunately, for many applications, including the ones formerly mentioned, we can look at the problem in the eyes and exploit the inherent data structure arising from the cost and constraints describing the problem.This book presents several research efforts to resolve this scientific challenge with important computational implications. It provides the development of alternative optimization schemes that scale well in terms of computational complexity, at least in some identified class of problems. It also features a unified modeling framework to handle a wide range of applications involving both commutative and noncommutative variables, and to solve concretely large-scale instances. Readers will find a practical section dedicated to the use of available open-source software libraries.This interdisciplinary monograph is essential reading for students, researchers and professionals interested in solving optimization problems with polynomial input data. Codice articolo LU-9781800612945

Contatta il venditore

Compra nuovo

EUR 109,11
EUR 74,03 shipping
Spedito da Regno Unito a U.S.A.

Quantità: 6 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

Magron, Victor|Wang, Jie
ISBN 10: 180061294X ISBN 13: 9781800612945
Nuovo Rilegato
Print on Demand

Da: moluna, Greven, Germania

Valutazione del venditore 4 su 5 stelle 4 stelle, Maggiori informazioni sulle valutazioni dei venditori

Gebunden. Condizione: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. KlappentextMany applications, including computer vision, computer arithmetic, deep learning, entanglement in quantum information, graph theory and energy networks, can be successfully tackled within the framework of polynomial optimizati. Codice articolo 594275088

Contatta il venditore

Compra nuovo

EUR 113,51
EUR 48,99 shipping
Spedito da Germania a U.S.A.

Quantità: Più di 20 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

Victor Magron, Jie Wang
ISBN 10: 180061294X ISBN 13: 9781800612945
Nuovo Rilegato

Da: Rarewaves.com USA, London, LONDO, Regno Unito

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Hardback. Condizione: New. Many applications, including computer vision, computer arithmetic, deep learning, entanglement in quantum information, graph theory and energy networks, can be successfully tackled within the framework of polynomial optimization, an emerging field with growing research efforts in the last two decades. One key advantage of these techniques is their ability to model a wide range of problems using optimization formulations. Polynomial optimization heavily relies on the moment-sums of squares (moment-SOS) approach proposed by Lasserre, which provides certificates for positive polynomials. On the practical side, however, there is 'no free lunch' and such optimization methods usually encompass severe scalability issues. Fortunately, for many applications, including the ones formerly mentioned, we can look at the problem in the eyes and exploit the inherent data structure arising from the cost and constraints describing the problem.This book presents several research efforts to resolve this scientific challenge with important computational implications. It provides the development of alternative optimization schemes that scale well in terms of computational complexity, at least in some identified class of problems. It also features a unified modeling framework to handle a wide range of applications involving both commutative and noncommutative variables, and to solve concretely large-scale instances. Readers will find a practical section dedicated to the use of available open-source software libraries.This interdisciplinary monograph is essential reading for students, researchers and professionals interested in solving optimization problems with polynomial input data. Codice articolo LU-9781800612945

Contatta il venditore

Compra nuovo

EUR 115,41
Spedizione gratuita
Spedito da Regno Unito a U.S.A.

Quantità: 6 disponibili

Aggiungi al carrello

Foto dell'editore

Victor Magron
ISBN 10: 180061294X ISBN 13: 9781800612945
Nuovo Rilegato

Da: Grand Eagle Retail, Bensenville, IL, U.S.A.

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Hardcover. Condizione: new. Hardcover. Many applications, including computer vision, computer arithmetic, deep learning, entanglement in quantum information, graph theory and energy networks, can be successfully tackled within the framework of polynomial optimization, an emerging field with growing research efforts in the last two decades. One key advantage of these techniques is their ability to model a wide range of problems using optimization formulations. Polynomial optimization heavily relies on the moment-sums of squares (moment-SOS) approach proposed by Lasserre, which provides certificates for positive polynomials. On the practical side, however, there is 'no free lunch' and such optimization methods usually encompass severe scalability issues. Fortunately, for many applications, including the ones formerly mentioned, we can look at the problem in the eyes and exploit the inherent data structure arising from the cost and constraints describing the problem.This book presents several research efforts to resolve this scientific challenge with important computational implications. It provides the development of alternative optimization schemes that scale well in terms of computational complexity, at least in some identified class of problems. It also features a unified modeling framework to handle a wide range of applications involving both commutative and noncommutative variables, and to solve concretely large-scale instances. Readers will find a practical section dedicated to the use of available open-source software libraries.This interdisciplinary monograph is essential reading for students, researchers and professionals interested in solving optimization problems with polynomial input data. Shipping may be from multiple locations in the US or from the UK, depending on stock availability. Codice articolo 9781800612945

Contatta il venditore

Compra nuovo

EUR 117,32
Spedizione gratuita
Spedito in U.S.A.

Quantità: 1 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

Magron Victor
Editore: WSPC (Europe), 2023
ISBN 10: 180061294X ISBN 13: 9781800612945
Nuovo Rilegato
Print on Demand

Da: preigu, Osnabrück, Germania

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Buch. Condizione: Neu. SPARSE POLYNOMIAL OPTIMIZATION | THEORY AND PRACTICE | Magron Victor | Buch | Gebunden | Englisch | 2023 | WSPC (Europe) | EAN 9781800612945 | Verantwortliche Person für die EU: Libri GmbH, Europaallee 1, 36244 Bad Hersfeld, gpsr[at]libri[dot]de | Anbieter: preigu Print on Demand. Codice articolo 121668140

Contatta il venditore

Compra nuovo

EUR 117,80
EUR 70,00 shipping
Spedito da Germania a U.S.A.

Quantità: 5 disponibili

Aggiungi al carrello

Foto dell'editore

Magron, Victor/ Wang, Jie
ISBN 10: 180061294X ISBN 13: 9781800612945
Nuovo Rilegato

Da: Revaluation Books, Exeter, Regno Unito

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Hardcover. Condizione: Brand New. 200 pages. 9.00x6.00x0.56 inches. In Stock. Codice articolo x-180061294X

Contatta il venditore

Compra nuovo

EUR 121,69
EUR 11,39 shipping
Spedito da Regno Unito a U.S.A.

Quantità: 2 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

Magron Victor
Editore: WSPC (Europe), 2023
ISBN 10: 180061294X ISBN 13: 9781800612945
Nuovo Rilegato
Print on Demand

Da: AHA-BUCH GmbH, Einbeck, Germania

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Buch. Condizione: Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - Many applications, including computer vision, computer arithmetic, deep learning, entanglement in quantum information, graph theory and energy networks, can be successfully tackled within the framework of polynomial optimization, an emerging field with growing research efforts in the last two decades. One key advantage of these techniques is their ability to model a wide range of problems using optimization formulations. Polynomial optimization heavily relies on the moment-sums of squares (moment-SOS) approach proposed by Lasserre, which provides certificates for positive polynomials. On the practical side, however, there is 'no free lunch' and such optimization methods usually encompass severe scalability issues. Fortunately, for many applications, including the ones formerly mentioned, we can look at the problem in the eyes and exploit the inherent data structure arising from the cost and constraints describing the problem.This book presents several research efforts to resolve this scientific challenge with important computational implications. It provides the development of alternative optimization schemes that scale well in terms of computational complexity, at least in some identified class of problems. It also features a unified modeling framework to handle a wide range of applications involving both commutative and noncommutative variables, and to solve concretely large-scale instances. Readers will find a practical section dedicated to the use of available open-source software libraries.This interdisciplinary monograph is essential reading for students, researchers and professionals interested in solving optimization problems with polynomial input data. Codice articolo 9781800612945

Contatta il venditore

Compra nuovo

EUR 127,51
EUR 62,41 shipping
Spedito da Germania a U.S.A.

Quantità: 1 disponibili

Aggiungi al carrello

Vedi altre 1 copie di questo libro

Vedi tutti i risultati per questo libro