Riassunto:
This is the first comprehensive treatment of feed-forward neural networks from the perspective of statistical pattern recognition. After introducing the basic concepts, the book examines techniques for modeling probability density functions and the properties and merits of the multi-layer perceptron and radial basis function network models. Also covered are various forms of error functions, principal algorithms for error function minimalization, learning and generalization in neural networks, and Bayesian techniques and their applications. Designed as a text, with over 100 exercises, this fully up-to-date work will benefit anyone involved in the fields of neural computation and pattern recognition.
Recensione:
excellent... Bishop is able to achieve a level of depth on these topics which is unparalleled in other neural-net texts.... clear and concise mathematical analysis. Bishop's text [] picks up where Duda and Hart left off, and, luckily does so with the same level of clarity and elegance. Neural Networks for Pattern Recognition is an excellent read, and represents a real contribution to the neural-net community. IEEE Transactions on Neural Networks, May 1997
this is an excellent book in the specialised area of statistical pattern recognition with statistical neural nets ... a good starting point for new students in those laboratories where research into statistico-neural pattern recognition is being done ... The examples for the reader at the end of this and every chapter are well chosen and will ensure sales as a course textbook ... this is a first-class book for the researcher in statistical pattern recognition. (Times Higher)
Bishop leads the way through a forest of mathematical minutiae. Readers will emerge with a rigorous statistical grounding in the theory of how to construct and train neural networks in pattern recognition. New Scientist
[Bishop] has written a textbook, introducing techniques, relating them to the theory, and explaining their pitfalls. Moreover, a large set of exercises makes it attractive for the teacher to use the book.... should be warmly welcomed by the neural network and pattern recognition communities. Bishop can be recommended to students and engineers in computer science. The Computer Journal, Volume 39, No. 6, 1996
Its sequential organization and end-of chapter exercises make it an ideal mental gymnasium. The author has eschewed biological metaphor and sweeping statements in favour of welcome mathematical rigour. Scientific Computing World
a neural network introduction placed in a pattern recognition context. ...He has written a textbook, introducing techniques, relating them to the theory and explaining their pitfalls. Moreover, a large set of exercises makes it attractive for the teacher to use the book ... should be warmly welcomed by the neural network and pattern recognition communities. (Robert P. W. Duin, IAPR Newsletter Vol. 19 No. 2 April 1997)
This outstanding book contributes remarkably to a better statistical understanding of artificial neural networks. The superior quality of this book is that it presents a comprehensive self-contained survey of feed-forward networks from the point of view of statistical pattern recognition. (Zbl.Math 868)
Le informazioni nella sezione "Su questo libro" possono far riferimento a edizioni diverse di questo titolo.