Articoli correlati a Pattern Recognition And Machine Learning

Pattern Recognition And Machine Learning

Valutazione media 4,31
( su 1.648 valutazioni fornite da Goodreads )
 
9780387310732: Pattern Recognition And Machine Learning
Vedi tutte le copie di questo ISBN:
 
 

This is the first textbook on pattern recognition to present the Bayesian viewpoint. The book presents approximate inference algorithms that permit fast approximate answers in situations where exact answers are not feasible. It uses graphical models to describe probability distributions when no other books apply graphical models to machine learning. No previous knowledge of pattern recognition or machine learning concepts is assumed. Familiarity with multivariate calculus and basic linear algebra is required, and some experience in the use of probabilities would be helpful though not essential as the book includes a self-contained introduction to basic probability theory.

Le informazioni nella sezione "Riassunto" possono far riferimento a edizioni diverse di questo titolo.

Recensione:

"Author aims this text at advanced undergraduates, beginning graduate students, and researchers new to machine learning and pattern recognition. ... Pattern Recognition and Machine Learning provides excellent intuitive descriptions and appropriate-level technical details on modern pattern recognition and machine learning. It can be used to teach a course or for self-study, as well as for a reference. ... I strongly recommend it for the intended audience and note that Neal (2007) also has given this text a strong review to complement its strong sales record." --Thomas Burr, Journal of the American Statistical Association, Vol. 103 (482), June, 2008

"In this book, aimed at senior undergraduates or beginning graduate students, Bishop provides an authoritative presentation of many of the statistical techniques that have come to be considered part of pattern recognition or machine learning . ... This book will serve as an excellent reference. ... With its coherent viewpoint, accurate and extensive coverage, and generally good explanations, Bishop s book is a useful introduction ... and a valuable reference for the principle techniques used in these fields." --Radford M. Neal, Technometrics, Vol. 49 (3), August, 2007

"This beautifully produced book is intended for advanced undergraduates, PhD students, and researchers and practitioners, primarily in the machine learning or allied areas...A strong feature is the use of geometric illustration and intuition...This is an impressive and interesting book that might form the basis of several advanced statistics courses. It would be a good choice for a reading group." --John Maindonald for the Journal of Statistical Software

L'autore:

?Chris Bishop is a Microsoft Distinguished Scientist and the Laboratory Director at Microsoft Research Cambridge. He is also Professor of Computer Science at the University of Edinburgh, and a Fellow of Darwin College, Cambridge. In 2004, he was elected Fellow of the Royal Academy of Engineering, and in 2007 he was elected Fellow of the Royal Society of Edinburgh.
Chris obtained a BA in Physics from Oxford, and a PhD in Theoretical Physics from the University of Edinburgh, with a thesis on quantum field theory. He then joined Culham Laboratory where he worked on the theory of magnetically confined plasmas as part of the European controlled fusion programme.

Le informazioni nella sezione "Su questo libro" possono far riferimento a edizioni diverse di questo titolo.

I migliori risultati di ricerca su AbeBooks

Foto dell'editore

Christopher M. Bishop
Editore: Springer (2006)
ISBN 10: 0387310738 ISBN 13: 9780387310732
Nuovo Rilegato Quantità: 1
Da
Byrd Books
(Austin, TX, U.S.A.)
Valutazione libreria

Descrizione libro Condizione: new. Codice articolo byrd_excel_0387310738

Informazioni sul venditore | Contattare il venditore

Compra nuovo
EUR 68,30
Convertire valuta

Aggiungere al carrello

Spese di spedizione: EUR 2,65
In U.S.A.
Destinazione, tempi e costi
Immagini fornite dal venditore

Bishop, Christopher; Bishop, Christopher M.; Bishop, Bishop
Editore: Springer (2006)
ISBN 10: 0387310738 ISBN 13: 9780387310732
Nuovo Rilegato Quantità: 2
Da
GreatBookPrices
(Columbia, MD, U.S.A.)
Valutazione libreria

Descrizione libro Condizione: New. Codice articolo 4240172-n

Informazioni sul venditore | Contattare il venditore

Compra nuovo
EUR 81,38
Convertire valuta

Aggiungere al carrello

Spese di spedizione: EUR 2,33
In U.S.A.
Destinazione, tempi e costi
Foto dell'editore

Christopher M. Bishop
Editore: Springer (2011)
ISBN 10: 0387310738 ISBN 13: 9780387310732
Nuovo Rilegato Quantità: 2
Da
Paperbackshop-US
(Wood Dale, IL, U.S.A.)
Valutazione libreria

Descrizione libro HRD. Condizione: New. New Book. Shipped from UK. Established seller since 2000. Codice articolo C8-9780387310732

Informazioni sul venditore | Contattare il venditore

Compra nuovo
EUR 85,17
Convertire valuta

Aggiungere al carrello

Spese di spedizione: GRATIS
In U.S.A.
Destinazione, tempi e costi
Foto dell'editore

Bishop, Christopher M.
Editore: Springer (2006)
ISBN 10: 0387310738 ISBN 13: 9780387310732
Nuovo Rilegato Quantità: > 20
Da
Ria Christie Collections
(Uxbridge, Regno Unito)
Valutazione libreria

Descrizione libro Condizione: New. Codice articolo ria9780387310732_new

Informazioni sul venditore | Contattare il venditore

Compra nuovo
EUR 77,57
Convertire valuta

Aggiungere al carrello

Spese di spedizione: EUR 8,17
Da: Regno Unito a: U.S.A.
Destinazione, tempi e costi
Immagini fornite dal venditore

Bishop, Christopher; Bishop, Christopher M.; Bishop, Bishop
Editore: Springer (2006)
ISBN 10: 0387310738 ISBN 13: 9780387310732
Nuovo Rilegato Quantità: 5
Da
GreatBookPricesUK
(Castle Donington, DERBY, Regno Unito)
Valutazione libreria

Descrizione libro Condizione: New. Codice articolo 4240172-n

Informazioni sul venditore | Contattare il venditore

Compra nuovo
EUR 72,94
Convertire valuta

Aggiungere al carrello

Spese di spedizione: EUR 17,54
Da: Regno Unito a: U.S.A.
Destinazione, tempi e costi
Foto dell'editore

Christopher M. Bishop
Editore: Springer-Verlag New York Inc., United States (2011)
ISBN 10: 0387310738 ISBN 13: 9780387310732
Nuovo Rilegato Quantità: 10
Da
Book Depository hard to find
(London, Regno Unito)
Valutazione libreria

Descrizione libro Hardback. Condizione: New. 1st ed. 2006. Corr. 2nd printing 2011. Language: English. Brand new Book. This is the first textbook on pattern recognition to present the Bayesian viewpoint. The book presents approximate inference algorithms that permit fast approximate answers in situations where exact answers are not feasible. It uses graphical models to describe probability distributions when no other books apply graphical models to machine learning. No previous knowledge of pattern recognition or machine learning concepts is assumed. Familiarity with multivariate calculus and basic linear algebra is required, and some experience in the use of probabilities would be helpful though not essential as the book includes a self-contained introduction to basic probability theory. Codice articolo SPP9780387310732

Informazioni sul venditore | Contattare il venditore

Compra nuovo
EUR 95,87
Convertire valuta

Aggiungere al carrello

Spese di spedizione: GRATIS
Da: Regno Unito a: U.S.A.
Destinazione, tempi e costi
Foto dell'editore

Christopher M. Bishop
Editore: Springer (2011)
ISBN 10: 0387310738 ISBN 13: 9780387310732
Nuovo Rilegato Quantità: 2
Da
Books2Anywhere
(Fairford, GLOS, Regno Unito)
Valutazione libreria

Descrizione libro HRD. Condizione: New. New Book. Shipped from UK. Established seller since 2000. Codice articolo C8-9780387310732

Informazioni sul venditore | Contattare il venditore

Compra nuovo
EUR 70,32
Convertire valuta

Aggiungere al carrello

Spese di spedizione: EUR 29,23
Da: Regno Unito a: U.S.A.
Destinazione, tempi e costi
Foto dell'editore

Bishop Christopher M.
Editore: Springer (2006)
ISBN 10: 0387310738 ISBN 13: 9780387310732
Nuovo Rilegato Quantità: 2
Da
Majestic Books
(Hounslow, Regno Unito)
Valutazione libreria

Descrizione libro Condizione: New. pp. xx + 738 304 Illus. (Col.). Codice articolo 7599434

Informazioni sul venditore | Contattare il venditore

Compra nuovo
EUR 94,08
Convertire valuta

Aggiungere al carrello

Spese di spedizione: EUR 7,60
Da: Regno Unito a: U.S.A.
Destinazione, tempi e costi
Immagini fornite dal venditore

Christopher M. Bishop
Editore: Berlin Springer New York Springer Apr 2011 (2011)
ISBN 10: 0387310738 ISBN 13: 9780387310732
Nuovo Rilegato Quantità: 2
Da
Rheinberg-Buch
(Bergisch Gladbach, Germania)
Valutazione libreria

Descrizione libro Buch. Condizione: Neu. Neuware - The dramatic growth in practical applications for machine learning over the last ten years has been accompanied by many important developments in the underlying algorithms and techniques. For example, Bayesian methods have grown from a specialist niche to become mainstream, while graphical models have emerged as a general framework for describing and applying probabilistic techniques. The practical applicability of Bayesian methods has been greatly enhanced by the development of a range of approximate inference algorithms such as variational Bayes and expectation propagation, while new models based on kernels have had a significant impact on both algorithms and applications.This completely new textbook reflects these recent developments while providing a comprehensive introduction to the fields of pattern recognition and machine learning. It is aimed at advanced undergraduates or first-year PhD students, as well as researchers and practitioners. No previous knowledge of pattern recognition or machine learning concepts is assumed. Familiarity with multivariate calculus and basic linear algebra isrequired, and some experience in the use of probabilities would be helpful though not essential as the book includes a self-contained introduction to basic probability theory.The book is suitable for courses on machine learning, statistics, computer science, signal processing, computer vision, data mining, and bioinformatics. Extensive support is provided for course instructors, including more than 400 exercises, graded according to difficulty. Example solutions for a subset of the exercises are available from the book web site, while solutions for the remainder can be obtained by instructors from the publisher. The book is supported by a great deal of additional material, and the reader is encouraged to visit the book web site for the latest information.Coming soon: For students, worked solutions to a subset of exercises available on a public web site (for exercises marked 'www' in the text) For instructors, worked solutions to remaining exercises from the Springer web site Lecture slides to accompany each chapter Data sets available for download 740 pp. Englisch. Codice articolo 9780387310732

Informazioni sul venditore | Contattare il venditore

Compra nuovo
EUR 90,94
Convertire valuta

Aggiungere al carrello

Spese di spedizione: EUR 17,13
Da: Germania a: U.S.A.
Destinazione, tempi e costi
Immagini fornite dal venditore

Christopher M. Bishop
Editore: Berlin Springer New York Springer Apr 2011 (2011)
ISBN 10: 0387310738 ISBN 13: 9780387310732
Nuovo Rilegato Quantità: 2
Da
BuchWeltWeit Inh. Ludwig Meier e.K.
(Bergisch Gladbach, Germania)
Valutazione libreria

Descrizione libro Buch. Condizione: Neu. Neuware - The dramatic growth in practical applications for machine learning over the last ten years has been accompanied by many important developments in the underlying algorithms and techniques. For example, Bayesian methods have grown from a specialist niche to become mainstream, while graphical models have emerged as a general framework for describing and applying probabilistic techniques. The practical applicability of Bayesian methods has been greatly enhanced by the development of a range of approximate inference algorithms such as variational Bayes and expectation propagation, while new models based on kernels have had a significant impact on both algorithms and applications.This completely new textbook reflects these recent developments while providing a comprehensive introduction to the fields of pattern recognition and machine learning. It is aimed at advanced undergraduates or first-year PhD students, as well as researchers and practitioners. No previous knowledge of pattern recognition or machine learning concepts is assumed. Familiarity with multivariate calculus and basic linear algebra isrequired, and some experience in the use of probabilities would be helpful though not essential as the book includes a self-contained introduction to basic probability theory.The book is suitable for courses on machine learning, statistics, computer science, signal processing, computer vision, data mining, and bioinformatics. Extensive support is provided for course instructors, including more than 400 exercises, graded according to difficulty. Example solutions for a subset of the exercises are available from the book web site, while solutions for the remainder can be obtained by instructors from the publisher. The book is supported by a great deal of additional material, and the reader is encouraged to visit the book web site for the latest information.Coming soon: For students, worked solutions to a subset of exercises available on a public web site (for exercises marked 'www' in the text) For instructors, worked solutions to remaining exercises from the Springer web site Lecture slides to accompany each chapter Data sets available for download 740 pp. Englisch. Codice articolo 9780387310732

Informazioni sul venditore | Contattare il venditore

Compra nuovo
EUR 90,94
Convertire valuta

Aggiungere al carrello

Spese di spedizione: EUR 17,13
Da: Germania a: U.S.A.
Destinazione, tempi e costi

Vedi altre copie di questo libro

Vedi tutti i risultati per questo libro