In recent years there has been enormous activity in the theory of algebraic curves. Many long-standing problems have been solved using the general techniques developed in algebraic geometry during the 1950's and 1960's. Additionally, unexpected and deep connections between algebraic curves and differential equations have been uncovered, and these in turn shed light on other classical problems in curve theory. It seems fair to say that the theory of algebraic curves looks completely different now from how it appeared 15 years ago; in particular, our current state of knowledge repre sents a significant advance beyond the legacy left by the classical geometers such as Noether, Castelnuovo, Enriques, and Severi. These books give a presentation of one of the central areas of this recent activity; namely, the study of linear series on both a fixed curve (Volume I) and on a variable curve (Volume II). Our goal is to give a comprehensive and self-contained account of the extrinsic geometry of algebraic curves, which in our opinion constitutes the main geometric core of the recent advances in curve theory. Along the way we shall, of course, discuss appli cations of the theory of linear series to a number of classical topics (e.g., the geometry of the Riemann theta divisor) as well as to some of the current research (e.g., the Kodaira dimension of the moduli space of curves).
Le informazioni nella sezione "Riassunto" possono far riferimento a edizioni diverse di questo titolo.
From the reviews:
“A comprehensive account of the deepest results of the geometry of algebraic curves that were obtained in the second half of the 20th century using some of the more advanced techniques of abstract algebraic geometry ... . at the end of every chapter there bibliographical notes that guide the reader to the original literature and further developments and sets of exercises that complement the theory ... . an immediate standard reference for researchers and students working on the geometry of algebraic curves ... .” (Felipe Zaldivar, The Mathematical Association of America, July, 2011)
Contenuti:Preliminaries.- Determinantal Varieties.- to Special Divisors.- The Varieties of Special Linear Series on a Curve.- The Basic Results of the Brill-Noether Theory.- The Geometric Theory of Riemann’s Theta Function.- The Existence and Connectedness Theorems for W d r (C).- Enumerative Geometry of Curves.
Le informazioni nella sezione "Su questo libro" possono far riferimento a edizioni diverse di questo titolo.
Spese di spedizione:
EUR 3,32
In U.S.A.
Descrizione libro Springer, 1984. Condizione: new. Codice articolo HolzAbe_New_0387909974
Descrizione libro Springer, 1984. Condizione: New. A+ Customer service! Satisfaction Guaranteed! Book is in NEW condition. Codice articolo 0387909974-2-1
Descrizione libro Springer, 1984. Condizione: new. Codice articolo think0387909974
Descrizione libro Springer-Verlag New York Inc., United States, 2007. Hardback. Condizione: New. 1st ed. 1985, Corr. 2nd printing 2007. Language: English. Brand new Book. In recent years there has been enormous activity in the theory of algebraic curves. Many long-standing problems have been solved using the general techniques developed in algebraic geometry during the 1950's and 1960's. Additionally, unexpected and deep connections between algebraic curves and differential equations have been uncovered, and these in turn shed light on other classical problems in curve theory. It seems fair to say that the theory of algebraic curves looks completely different now from how it appeared 15 years ago; in particular, our current state of knowledge repre sents a significant advance beyond the legacy left by the classical geometers such as Noether, Castelnuovo, Enriques, and Severi. These books give a presentation of one of the central areas of this recent activity; namely, the study of linear series on both a fixed curve (Volume I) and on a variable curve (Volume II). Our goal is to give a comprehensive and self-contained account of the extrinsic geometry of algebraic curves, which in our opinion constitutes the main geometric core of the recent advances in curve theory. Along the way we shall, of course, discuss appli cations of the theory of linear series to a number of classical topics (e.g., the geometry of the Riemann theta divisor) as well as to some of the current research (e.g., the Kodaira dimension of the moduli space of curves). Codice articolo LHB9780387909974
Descrizione libro Springer, 1984. Condizione: New. Codice articolo 2029678-n
Descrizione libro Springer, 1984. Condizione: New. New. Codice articolo Q-0387909974
Descrizione libro Springer, 2007. HRD. Condizione: New. New Book. Shipped from UK. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000. Codice articolo IG-9780387909974
Descrizione libro Springer, 2017. Paperback. Condizione: New. PRINT ON DEMAND Book; New; Publication Year 2017; Fast Shipping from the UK. No. book. Codice articolo ria9780387909974_lsuk
Descrizione libro Springer, 1984. Condizione: New. Codice articolo 2029678-n
Descrizione libro Springer, 2007. HRD. Condizione: New. New Book. Delivered from our UK warehouse in 4 to 14 business days. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000. Codice articolo IG-9780387909974