RUDIN Principles of Mathematical Analysis

ISBN 13: 9781259064784

Principles of Mathematical Analysis

Valutazione media 4,28
( su 1.465 valutazioni fornite da Goodreads )
 
9781259064784: Principles of Mathematical Analysis
Vedi tutte le copie di questo ISBN:
 
 

Mcgraw Hill International Edition(book content & author is same as original EDITION). Shipped right away and item delivery assured in 4-5 business days. NEW GOOD PRINT.

Le informazioni nella sezione "Riassunto" possono far riferimento a edizioni diverse di questo titolo.

I migliori risultati di ricerca su AbeBooks

1.

RUDIN
Editore: MC GRAW HILL INDIA (2013)
ISBN 10: 1259064786 ISBN 13: 9781259064784
Nuovo Soft cover Quantità: 20
Da
Books in my Basket
(New Delhi, India)
Valutazione libreria

Descrizione libro MC GRAW HILL INDIA, 2013. Soft cover. Condizione: New. Codice articolo 1168869

Informazioni sul venditore | Contattare il venditore

Compra nuovo
EUR 6,95
Convertire valuta

Aggiungere al carrello

Spese di spedizione: EUR 12,90
Da: India a: U.S.A.
Destinazione, tempi e costi

2.

RUDIN
Editore: Mc Graw Hill India (2013)
ISBN 10: 1259064786 ISBN 13: 9781259064784
Nuovo Quantità: > 20
Da
BookVistas
(New Delhi, India)
Valutazione libreria

Descrizione libro Mc Graw Hill India, 2013. Condizione: New. Codice articolo NIBA-9781259064784

Informazioni sul venditore | Contattare il venditore

Compra nuovo
EUR 9,04
Convertire valuta

Aggiungere al carrello

Spese di spedizione: EUR 11,99
Da: India a: U.S.A.
Destinazione, tempi e costi

3.

RUDIN
Editore: Mc Graw Hill India (2013)
ISBN 10: 1259064786 ISBN 13: 9781259064784
Nuovo Quantità: > 20
Da
Vikram Jain Books
(New Delhi, India)
Valutazione libreria

Descrizione libro Mc Graw Hill India, 2013. Condizione: New. Codice articolo NIBA-9781259064784

Informazioni sul venditore | Contattare il venditore

Compra nuovo
EUR 9,04
Convertire valuta

Aggiungere al carrello

Spese di spedizione: EUR 11,99
Da: India a: U.S.A.
Destinazione, tempi e costi

4.

Rudin
Editore: Mc Graw Hill India
ISBN 10: 1259064786 ISBN 13: 9781259064784
Nuovo Quantità: 5
Da
BookVistas
(New Delhi, India)
Valutazione libreria

Descrizione libro Mc Graw Hill India. Condizione: New. Codice articolo UDH-9781259064784

Informazioni sul venditore | Contattare il venditore

Compra nuovo
EUR 9,07
Convertire valuta

Aggiungere al carrello

Spese di spedizione: EUR 11,99
Da: India a: U.S.A.
Destinazione, tempi e costi

5.

Rudin
Editore: Mc Graw Hill India
ISBN 10: 1259064786 ISBN 13: 9781259064784
Nuovo Quantità: 5
Da
Vikram Jain Books
(New Delhi, India)
Valutazione libreria

Descrizione libro Mc Graw Hill India. Condizione: New. Codice articolo UDH-9781259064784

Informazioni sul venditore | Contattare il venditore

Compra nuovo
EUR 9,07
Convertire valuta

Aggiungere al carrello

Spese di spedizione: EUR 11,99
Da: India a: U.S.A.
Destinazione, tempi e costi

6.

Rudin
Editore: Mc Graw Hill India (2013)
ISBN 10: 1259064786 ISBN 13: 9781259064784
Nuovo Paperback Quantità: 5
Da
Vikram Jain Books
(New Delhi, India)
Valutazione libreria

Descrizione libro Mc Graw Hill India, 2013. Paperback. Condizione: New. Codice articolo Adhya-9781259064784

Informazioni sul venditore | Contattare il venditore

Compra nuovo
EUR 9,07
Convertire valuta

Aggiungere al carrello

Spese di spedizione: EUR 11,99
Da: India a: U.S.A.
Destinazione, tempi e costi

7.

Rudin
Editore: Mc Graw Hill India (2013)
ISBN 10: 1259064786 ISBN 13: 9781259064784
Nuovo Paperback Quantità: 5
Da
BookVistas
(New Delhi, India)
Valutazione libreria

Descrizione libro Mc Graw Hill India, 2013. Paperback. Condizione: New. Codice articolo Adhya-9781259064784

Informazioni sul venditore | Contattare il venditore

Compra nuovo
EUR 9,07
Convertire valuta

Aggiungere al carrello

Spese di spedizione: EUR 11,99
Da: India a: U.S.A.
Destinazione, tempi e costi

8.

Walter Rudin
Editore: Tata McGraw-Hill Education Pvt. Ltd (2016)
ISBN 10: 1259064786 ISBN 13: 9781259064784
Nuovo Softcover Quantità: 5
Da
BookVistas
(New Delhi, India)
Valutazione libreria

Descrizione libro Tata McGraw-Hill Education Pvt. Ltd, 2016. Softcover. Condizione: New. 5th or later edition. The third edition of this well known text continues to provide a solid foundation in mathematical analysis for undergraduate and first-year graduate students. The text begins with a discussion of the real number system as a complete ordered field. (Dedekind`s construction is now treated in an appendix to Chapter I.) The topological background needed for the development of convergence, continuity, differentiation and integration is provided in Chapter 2. There is a new section on the gamma function, and many new and interesting exercises are included. TABLE OF CONTENTS Chapter 1: The Real and Complex Number Systems Introduction Ordered Sets Fields The Real Field The Extended Real Number System The Complex Field Euclidean Spaces Appendix Exercises Chapter 2: Basic Topology Finite, Countable, and Uncountable Sets Metric Spaces Compact Sets Perfect Sets Connected Sets Exercises Chapter 3: Numerical Sequences and Series Convergent Sequences Subsequences Cauchy Sequences Upper and Lower Limits Some Special Sequences Series Series of Nonnegative Terms The Number e The Root and Ratio Tests Power Series Summation by Parts Absolute Convergence Addition and Multiplication of Series Rearrangements Exercises Chapter 4: Continuity Limits of Functions Continuous Functions Continuity and Compactness Continuity and Connectedness Discontinuities Monotonic Functions Infinite Limits and Limits at Infinity Exercises Chapter 5: Differentiation The Derivative of a Real Function Mean Value Theorems The Continuity of Derivatives L`Hospital`s Rule Derivatives of Higher-Order Taylor`s Theorem Differentiation of Vector-valued Functions Exercises Chapter 6: The Riemann-Stieltjes Integral Definition and Existence of the Integral Properties of the Integral Integration and Differentiation Integration of Vector-valued Functions Rectifiable Curves Exercises Chapter 7: Sequences and Series of Functions Discussion of Main Problem Uniform Convergence Uniform Convergence and Continuity Uniform Convergence and Integration Uniform Convergence and Differentiation Equicontinuous Families of Functions The Stone-Weierstrass Theorem Exercises Chapter 8: Some Special Functions Power Series The Exponential and Logarithmic Functions The Trigonometric Functions The Algebraic Completeness of the Complex Field Fourier Series The Gamma Function Exercises Chapter 9: Functions of Several Variables Linear Transformations Differentiation The Contraction Principle The Inverse Function Theorem The Implicit Function Theorem The Rank Theorem Determinants Derivatives of Higher Order Differentiation of Integrals Exercises Chapter 10: Integration of Differential Forms Integration Primitive Mappings Partitions of Unity Change of Variables Differential Forms Simplexes and Chains Stokes` Theorem Closed Forms and Exact Forms Vector Analysis Exercises Chapter 11: The Lebesgue Theory Set Functions Construction of the Lebesgue Measure Measure Spaces Measurable Functions Simple Functions Integration Comparison with the Riemann Integral Integration of Complex Functions Functions of Class L2 Exercises Bibliography List of Special Symbols Index Printed Pages: 352. 15 x 23 cm. Codice articolo 75612

Informazioni sul venditore | Contattare il venditore

Compra nuovo
EUR 10,43
Convertire valuta

Aggiungere al carrello

Spese di spedizione: EUR 11,99
Da: India a: U.S.A.
Destinazione, tempi e costi

9.

Walter Rudin
Editore: Tata McGraw-Hill Education Pvt. Ltd (2016)
ISBN 10: 1259064786 ISBN 13: 9781259064784
Nuovo Softcover Quantità: 5
Da
Vikram Jain Books
(New Delhi, India)
Valutazione libreria

Descrizione libro Tata McGraw-Hill Education Pvt. Ltd, 2016. Softcover. Condizione: New. 5th or later edition. The third edition of this well known text continues to provide a solid foundation in mathematical analysis for undergraduate and first-year graduate students. The text begins with a discussion of the real number system as a complete ordered field. (Dedekind`s construction is now treated in an appendix to Chapter I.) The topological background needed for the development of convergence, continuity, differentiation and integration is provided in Chapter 2. There is a new section on the gamma function, and many new and interesting exercises are included. TABLE OF CONTENTS Chapter 1: The Real and Complex Number Systems Introduction Ordered Sets Fields The Real Field The Extended Real Number System The Complex Field Euclidean Spaces Appendix Exercises Chapter 2: Basic Topology Finite, Countable, and Uncountable Sets Metric Spaces Compact Sets Perfect Sets Connected Sets Exercises Chapter 3: Numerical Sequences and Series Convergent Sequences Subsequences Cauchy Sequences Upper and Lower Limits Some Special Sequences Series Series of Nonnegative Terms The Number e The Root and Ratio Tests Power Series Summation by Parts Absolute Convergence Addition and Multiplication of Series Rearrangements Exercises Chapter 4: Continuity Limits of Functions Continuous Functions Continuity and Compactness Continuity and Connectedness Discontinuities Monotonic Functions Infinite Limits and Limits at Infinity Exercises Chapter 5: Differentiation The Derivative of a Real Function Mean Value Theorems The Continuity of Derivatives L`Hospital`s Rule Derivatives of Higher-Order Taylor`s Theorem Differentiation of Vector-valued Functions Exercises Chapter 6: The Riemann-Stieltjes Integral Definition and Existence of the Integral Properties of the Integral Integration and Differentiation Integration of Vector-valued Functions Rectifiable Curves Exercises Chapter 7: Sequences and Series of Functions Discussion of Main Problem Uniform Convergence Uniform Convergence and Continuity Uniform Convergence and Integration Uniform Convergence and Differentiation Equicontinuous Families of Functions The Stone-Weierstrass Theorem Exercises Chapter 8: Some Special Functions Power Series The Exponential and Logarithmic Functions The Trigonometric Functions The Algebraic Completeness of the Complex Field Fourier Series The Gamma Function Exercises Chapter 9: Functions of Several Variables Linear Transformations Differentiation The Contraction Principle The Inverse Function Theorem The Implicit Function Theorem The Rank Theorem Determinants Derivatives of Higher Order Differentiation of Integrals Exercises Chapter 10: Integration of Differential Forms Integration Primitive Mappings Partitions of Unity Change of Variables Differential Forms Simplexes and Chains Stokes` Theorem Closed Forms and Exact Forms Vector Analysis Exercises Chapter 11: The Lebesgue Theory Set Functions Construction of the Lebesgue Measure Measure Spaces Measurable Functions Simple Functions Integration Comparison with the Riemann Integral Integration of Complex Functions Functions of Class L2 Exercises Bibliography List of Special Symbols Index Printed Pages: 352. Codice articolo 75612BV

Informazioni sul venditore | Contattare il venditore

Compra nuovo
EUR 10,43
Convertire valuta

Aggiungere al carrello

Spese di spedizione: EUR 11,99
Da: India a: U.S.A.
Destinazione, tempi e costi

10.

Walter Rudin
Editore: Tata McGraw-Hill Education Pvt. Ltd (2016)
ISBN 10: 1259064786 ISBN 13: 9781259064784
Nuovo Softcover Quantità: 5
Da
Vikram Jain Books
(New Delhi, India)
Valutazione libreria

Descrizione libro Tata McGraw-Hill Education Pvt. Ltd, 2016. Softcover. Condizione: New. 5th or later edition. The third edition of this well known text continues to provide a solid foundation in mathematical analysis for undergraduate and first-year graduate students. The text begins with a discussion of the real number system as a complete ordered field. (Dedekind`s construction is now treated in an appendix to Chapter I.) The topological background needed for the development of convergence, continuity, differentiation and integration is provided in Chapter 2. There is a new section on the gamma function, and many new and interesting exercises are included. TABLE OF CONTENTS Chapter 1: The Real and Complex Number Systems Introduction Ordered Sets Fields The Real Field The Extended Real Number System The Complex Field Euclidean Spaces Appendix Exercises Chapter 2: Basic Topology Finite, Countable, and Uncountable Sets Metric Spaces Compact Sets Perfect Sets Connected Sets Exercises Chapter 3: Numerical Sequences and Series Convergent Sequences Subsequences Cauchy Sequences Upper and Lower Limits Some Special Sequences Series Series of Nonnegative Terms The Number e The Root and Ratio Tests Power Series Summation by Parts Absolute Convergence Addition and Multiplication of Series Rearrangements Exercises Chapter 4: Continuity Limits of Functions Continuous Functions Continuity and Compactness Continuity and Connectedness Discontinuities Monotonic Functions Infinite Limits and Limits at Infinity Exercises Chapter 5: Differentiation The Derivative of a Real Function Mean Value Theorems The Continuity of Derivatives L`Hospital`s Rule Derivatives of Higher-Order Taylor`s Theorem Differentiation of Vector-valued Functions Exercises Chapter 6: The Riemann-Stieltjes Integral Definition and Existence of the Integral Properties of the Integral Integration and Differentiation Integration of Vector-valued Functions Rectifiable Curves Exercises Chapter 7: Sequences and Series of Functions Discussion of Main Problem Uniform Convergence Uniform Convergence and Continuity Uniform Convergence and Integration Uniform Convergence and Differentiation Equicontinuous Families of Functions The Stone-Weierstrass Theorem Exercises Chapter 8: Some Special Functions Power Series The Exponential and Logarithmic Functions The Trigonometric Functions The Algebraic Completeness of the Complex Field Fourier Series The Gamma Function Exercises Chapter 9: Functions of Several Variables Linear Transformations Differentiation The Contraction Principle The Inverse Function Theorem The Implicit Function Theorem The Rank Theorem Determinants Derivatives of Higher Order Differentiation of Integrals Exercises Chapter 10: Integration of Differential Forms Integration Primitive Mappings Partitions of Unity Change of Variables Differential Forms Simplexes and Chains Stokes` Theorem Closed Forms and Exact Forms Vector Analysis Exercises Chapter 11: The Lebesgue Theory Set Functions Construction of the Lebesgue Measure Measure Spaces Measurable Functions Simple Functions Integration Comparison with the Riemann Integral Integration of Complex Functions Functions of Class L2 Exercises Bibliography List of Special Symbols Index Printed Pages: 352. Codice articolo 75612

Informazioni sul venditore | Contattare il venditore

Compra nuovo
EUR 10,43
Convertire valuta

Aggiungere al carrello

Spese di spedizione: EUR 11,99
Da: India a: U.S.A.
Destinazione, tempi e costi

Vedi altre copie di questo libro

Vedi tutti i risultati per questo libro