Articoli correlati a Tutorial On Linear Function Approximators For Dynamic...

Tutorial On Linear Function Approximators For Dynamic Programming And Reinforcement Learning

Valutazione media 0
( su 0 valutazioni fornite da Goodreads )
 
9781601987600: Tutorial On Linear Function Approximators For Dynamic Programming And Reinforcement Learning
Vedi tutte le copie di questo ISBN:
 
 

A Markov Decision Process (MDP) is a natural framework for formulating sequential decision-making problems under uncertainty. In recent years, researchers have greatly advanced algorithms for learning and acting in MDPs. This book reviews such algorithms, beginning with well-known dynamic programming methods for solving MDPs such as policy iteration and value iteration, then describes approximate dynamic programming methods such as trajectory based value iteration, and finally moves to reinforcement learning methods such as Q-Learning, SARSA, and least-squares policy iteration. It describes algorithms in a unified framework, giving pseudocode together with memory and iteration complexity analysis for each. Empirical evaluations of these techniques, with four representations across four domains, provide insight into how these algorithms perform with various feature sets in terms of running time and performance. This tutorial provides practical guidance for researchers seeking to extend DP and RL techniques to larger domains through linear value function approximation. The practical algorithms and empirical successes outlined also form a guide for practitioners trying to weigh computational costs, accuracy requirements, and representational concerns. Decision making in large domains will always be challenging, but with the tools presented here this challenge is not insurmountable.

Le informazioni nella sezione "Riassunto" possono far riferimento a edizioni diverse di questo titolo.

I migliori risultati di ricerca su AbeBooks

Immagini fornite dal venditore

Geramifard, Alborz; Walsh, Thomas J.; Tellex, Stefanie; Chowdhary, Girish; Roy, Nicholas
Editore: Now Publishers Inc (2013)
ISBN 10: 1601987609 ISBN 13: 9781601987600
Nuovo Brossura Quantità: 5
Da:
GreatBookPrices
(Columbia, MD, U.S.A.)
Valutazione libreria

Descrizione libro Condizione: New. Codice articolo 20870122-n

Informazioni sul venditore | Contattare il venditore

Compra nuovo
EUR 52,03
Convertire valuta

Aggiungere al carrello

Spese di spedizione: EUR 2,47
In U.S.A.
Destinazione, tempi e costi
Foto dell'editore

Alborz Geramifard, Thomas J. Walsh, Tellex Stefanie,
Editore: Now Publishers Inc, United States (2013)
ISBN 10: 1601987609 ISBN 13: 9781601987600
Nuovo Paperback Quantità: 10
Da:
The Book Depository
(London, Regno Unito)
Valutazione libreria

Descrizione libro Paperback. Condizione: New. Language: English. Brand new Book. A Markov Decision Process (MDP) is a natural framework for formulating sequential decision-making problems under uncertainty. In recent years, researchers have greatly advanced algorithms for learning and acting in MDPs.This book reviews such algorithms, beginning with well-known dynamic programming methods for solving MDPs such as policy iteration and value iteration, then describes approximate dynamic programming methods such as trajectory based value iteration, and finally moves to reinforcement learning methods such as Q-Learning, SARSA, and least-squares policy iteration. It describes algorithms in a unified framework, giving pseudocode together with memory and iteration complexity analysis for each. Empirical evaluations of these techniques, with four representations across four domains, provide insight into how these algorithms perform with various feature sets in terms of running time and performance.This tutorial provides practical guidance for researchers seeking to extend DP and RL techniques to larger domains through linear value function approximation. The practical algorithms and empirical successes outlined also form a guide for practitioners trying to weigh computational costs, accuracy requirements, and representational concerns. Decision making in large domains will always be challenging, but with the tools presented here this challenge is not insurmountable. Codice articolo AAV9781601987600

Informazioni sul venditore | Contattare il venditore

Compra nuovo
EUR 55,93
Convertire valuta

Aggiungere al carrello

Spese di spedizione: GRATIS
Da: Regno Unito a: U.S.A.
Destinazione, tempi e costi
Foto dell'editore

Alborz Geramifard, Thomas J. Walsh, Tellex Stefanie,
Editore: Now Publishers Inc, United States (2013)
ISBN 10: 1601987609 ISBN 13: 9781601987600
Nuovo Paperback Quantità: 10
Da:
Book Depository hard to find
(London, Regno Unito)
Valutazione libreria

Descrizione libro Paperback. Condizione: New. Language: English. Brand new Book. A Markov Decision Process (MDP) is a natural framework for formulating sequential decision-making problems under uncertainty. In recent years, researchers have greatly advanced algorithms for learning and acting in MDPs.This book reviews such algorithms, beginning with well-known dynamic programming methods for solving MDPs such as policy iteration and value iteration, then describes approximate dynamic programming methods such as trajectory based value iteration, and finally moves to reinforcement learning methods such as Q-Learning, SARSA, and least-squares policy iteration. It describes algorithms in a unified framework, giving pseudocode together with memory and iteration complexity analysis for each. Empirical evaluations of these techniques, with four representations across four domains, provide insight into how these algorithms perform with various feature sets in terms of running time and performance.This tutorial provides practical guidance for researchers seeking to extend DP and RL techniques to larger domains through linear value function approximation. The practical algorithms and empirical successes outlined also form a guide for practitioners trying to weigh computational costs, accuracy requirements, and representational concerns. Decision making in large domains will always be challenging, but with the tools presented here this challenge is not insurmountable. Codice articolo TNP9781601987600

Informazioni sul venditore | Contattare il venditore

Compra nuovo
EUR 61,69
Convertire valuta

Aggiungere al carrello

Spese di spedizione: GRATIS
Da: Regno Unito a: U.S.A.
Destinazione, tempi e costi
Foto dell'editore

Geramifard, Alborz
Editore: Now Publishers Inc 2013-12 (2013)
ISBN 10: 1601987609 ISBN 13: 9781601987600
Nuovo PF Quantità: 1
Da:
International Bookstore
(Wallingford, OXON, Regno Unito)
Valutazione libreria

Descrizione libro PF. Condizione: New. Codice articolo 6959-LSI-9781601987600

Informazioni sul venditore | Contattare il venditore

Compra nuovo
EUR 67,22
Convertire valuta

Aggiungere al carrello

Spese di spedizione: EUR 0,59
Da: Regno Unito a: U.S.A.
Destinazione, tempi e costi
Immagini fornite dal venditore

Geramifard, Alborz; Walsh, Thomas J.; Tellex, Stefanie; Chowdhary, Girish; Roy, Nicholas
Editore: Now Publishers Inc (2013)
ISBN 10: 1601987609 ISBN 13: 9781601987600
Nuovo Brossura Quantità: 5
Da:
GreatBookPricesUK
(Castle Donington, DERBY, Regno Unito)
Valutazione libreria

Descrizione libro Condizione: New. Codice articolo 20870122-n

Informazioni sul venditore | Contattare il venditore

Compra nuovo
EUR 52,55
Convertire valuta

Aggiungere al carrello

Spese di spedizione: EUR 17,66
Da: Regno Unito a: U.S.A.
Destinazione, tempi e costi
Foto dell'editore

Geramifard; Alborz
Editore: Now Publishers Inc (2013)
ISBN 10: 1601987609 ISBN 13: 9781601987600
Nuovo Brossura Quantità: > 20
Print on Demand
Da:
Ria Christie Collections
(Uxbridge, Regno Unito)
Valutazione libreria

Descrizione libro Condizione: New. PRINT ON DEMAND Book; New; Fast Shipping from the UK. No. book. Codice articolo ria9781601987600_lsuk

Informazioni sul venditore | Contattare il venditore

Compra nuovo
EUR 60,18
Convertire valuta

Aggiungere al carrello

Spese di spedizione: EUR 10,59
Da: Regno Unito a: U.S.A.
Destinazione, tempi e costi
Foto dell'editore

Alborz Geramifard,Thomas J. Walsh,Stefanie Tellex,Girish Chowdhary,Nicholas Roy,Jonathan P. How
Editore: now publishers Inc 2014-02-28 (2014)
ISBN 10: 1601987609 ISBN 13: 9781601987600
Nuovo Paperback Quantità: 1
Da:
Chiron Media
(Wallingford, Regno Unito)
Valutazione libreria

Descrizione libro Paperback. Condizione: New. Codice articolo 6666-LSI-9781601987600

Informazioni sul venditore | Contattare il venditore

Compra nuovo
EUR 54,31
Convertire valuta

Aggiungere al carrello

Spese di spedizione: EUR 17,65
Da: Regno Unito a: U.S.A.
Destinazione, tempi e costi
Foto dell'editore

Alborz Geramifard
Editore: now publishers Inc (2013)
ISBN 10: 1601987609 ISBN 13: 9781601987600
Nuovo Paperback / softback Quantità: 5
Print on Demand
Da:
THE SAINT BOOKSTORE
(Southport, Regno Unito)
Valutazione libreria

Descrizione libro Paperback / softback. Condizione: New. This item is printed on demand. New copy - Usually dispatched within 5-9 working days. Codice articolo C9781601987600

Informazioni sul venditore | Contattare il venditore

Compra nuovo
EUR 66,70
Convertire valuta

Aggiungere al carrello

Spese di spedizione: EUR 11,72
Da: Regno Unito a: U.S.A.
Destinazione, tempi e costi
Foto dell'editore

Alborz Geramifard
Editore: now publishers Inc, United States, Hanover (2013)
ISBN 10: 1601987609 ISBN 13: 9781601987600
Nuovo Paperback Quantità: 2
Da:
WorldofBooks20
(GORING BY SEA, Regno Unito)
Valutazione libreria

Descrizione libro Paperback. Condizione: New. A Markov Decision Process (MDP) is a natural framework for formulating sequential decision-making problems under uncertainty. In recent years, researchers have greatly advanced algorithms for learning and acting in MDPs. This book reviews such algorithms, beginning with well-known dynamic programming methods for solving MDPs such as policy iteration and value iteration, then describes approximate dynamic programming methods such as trajectory based value iteration, and finally moves to reinforcement learning methods such as Q-Learning, SARSA, and least-squares policy iteration. It describes algorithms in a unified framework, giving pseudocode together with memory and iteration complexity analysis for each. Empirical evaluations of these techniques, with four representations across four domains, provide insight into how these algorithms perform with various feature sets in terms of running time and performance. This tutorial provides practical guidance for researchers seeking to extend DP and RL techniques to larger domains through linear value function approximation. The practical algorithms and empirical successes outlined also form a guide for practitioners trying to weigh computational costs, accuracy requirements, and representational concerns. Decision making in large domains will always be challenging, but with the tools presented here this challenge is not insurmountable. This is a Brand New book, in perfect condition. Quick dispatch. Codice articolo NLS9781601987600

Informazioni sul venditore | Contattare il venditore

Compra nuovo
EUR 62,13
Convertire valuta

Aggiungere al carrello

Spese di spedizione: EUR 23,55
Da: Regno Unito a: U.S.A.
Destinazione, tempi e costi
Immagini fornite dal venditore

Geramifard, Alborz", "Walsh, Thomas J.", "Tellex, Stefanie"
Editore: Now Publishers Inc (2013)
ISBN 10: 1601987609 ISBN 13: 9781601987600
Nuovo Soft Cover Quantità: 10
Print on Demand
Da:
booksXpress
(Freehold, NJ, U.S.A.)
Valutazione libreria

Descrizione libro Soft Cover. Condizione: new. This item is printed on demand. Codice articolo 9781601987600

Informazioni sul venditore | Contattare il venditore

Compra nuovo
EUR 91,49
Convertire valuta

Aggiungere al carrello

Spese di spedizione: GRATIS
In U.S.A.
Destinazione, tempi e costi

Vedi altre copie di questo libro

Vedi tutti i risultati per questo libro