In discussing the question of whether General Relativity Theory really needs to be quantized, a simply negative answer cannot be accepted, of course. Such an answer is not satisfying because, first, Einstein's gravitational equations connect gravity and non-gravitational matter and because, second, it can be taken for granted that non-gravitational matter has an atomic or quantum structure such that its energy-momentum tensor standing on the right-hand side of Einstein's equations is formed out of quantum operators. These two facts make it impossible to read the left-hand side of Einstein's equations as an ordinary classical function. This does not necessarily mean, however, that we must draw the conclusion that General Relativity Theory, similar to electrodynamics, could or should be quantized in a rigorous manner and that this quantization has similar consequences to quantum electrodynamics. In other words, when for reasons of consistency quantization is tried, then one has to ask whether and where the quantization procedure has a physical meaning, i.e., whether there exist measurable effects of quantum gravity. IQ accordance with these questions, we are mainly dealing with the discus sion of the principles of quantized General Relativity Theory and with the estimation of quantum effects including the question of their measurability. This analysis proves that it is impossible to distinguish between classical and quantum General Relativity Theory for the extreme case of Planck's orders of magnitude. In other words, there does not exist a physically meaningful rigorous quantization conception for Einstein's theory.
Le informazioni nella sezione "Riassunto" possono far riferimento a edizioni diverse di questo titolo.
1/Quantum Theory and Gravitation.- 2/Quantum Mechanics and Classical Gravitation.- 2.1. Diffraction of Particles by a Grating.- 2.2. Diffraction of Particles by a Gravitational Grating.- 2.3. Gravitational Atomic Model.- 2.4. Equivalence Principle and Heisenberg’s Fourth Relation.- 2.5. Quantum Mechanics and the Weak Principle of Equivalence.- 3/Measurement in Quantum Gravity.- 3.1. The Bohr—Rosenfeld Principles of Measurement in Quantum Field Theory.- (a) The Landau—Peierls Arguments.- (b) The Bohr—Rosenfeld Arguments.- 3.2. Measurement in Quantum Gravity.- 3.3. Ehrenfest’s Theorems.- 4/Mathematical Descriptions of Quantum Gravity.- 4.1. Heisenberg—Euler—Kockel Approximation.- 4.2. On Gauge Fixing in Quantum Gravity.- 5/Quantum Postulates and the Strong Principle of Equivalence.- 5.1. Gravitons and the Linear Approximation of General Relativity Theory.- 5.2. Gravitons and the Nonlinear High-Frequency Approximation of General Relativity Theory.- 5.3. Compton Effect.- 5.4. Lamb Shift.- 5.5. Black-body Radiation.- 5.6. A Historical Remark: Black-body Radiation and Compton Effect.- 6/Planckions.- 6.1. Heavy Gravitons.- 6.2. Planckions as Biggest Elementary Particles and as Smallest Test Bodies.- 6.3. Foam and Block Spaces.- Appendix A/Massive Shell Models and Shock Waves in Gravitational Theories with Higher Derivatives.- Appendix B/On the Physical Meaning of Planck’s ‘Natural Units’.- References.
Book by Borzeszkowski HorstHeino Treder HJ
Le informazioni nella sezione "Su questo libro" possono far riferimento a edizioni diverse di questo titolo.
Spese di spedizione:
EUR 6,90
Da: Germania a: Italia
Spese di spedizione:
EUR 9,70
Da: Germania a: Italia
Da: Buchpark, Trebbin, Germania
Condizione: Sehr gut. Zustand: Sehr gut - Gepflegter, sauberer Zustand. Aus der Auflösung einer renommierten Bibliothek. Kann Stempel beinhalten. | Seiten: 144 | Sprache: Englisch | Produktart: Bücher. Codice articolo 2677806/202
Quantità: 1 disponibili
Da: Klondyke, Almere, Paesi Bassi
Condizione: Good. Original boards, illustrated with numerous equations and diagrams, 8vo.; Name in pen on title page. Codice articolo 342344-ZA25
Quantità: 1 disponibili
Da: Zubal-Books, Since 1961, Cleveland, OH, U.S.A.
Condizione: Fine. 140 pp., Hardcover, previous owner's name to front free endpaper else LIKE NEW. - If you are reading this, this item is actually (physically) in our stock and ready for shipment once ordered. We are not bookjackers. Buyer is responsible for any additional duties, taxes, or fees required by recipient's country. Codice articolo ZB1262218
Quantità: 1 disponibili
Da: International Book Project, Lexington, KY, U.S.A.
hardcover. Condizione: Very Good. Clean, crisp pages, no markings. Slight foxing on the top. 100% of proceeds go towards promoting literacy in under-served areas of the world. Access codes and supplemental materials are not included. Codice articolo SKU0001218
Quantità: 1 disponibili
Da: moluna, Greven, Germania
Condizione: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. In discussing the question of whether General Relativity Theory really needs to be quantized, a simply negative answer cannot be accepted, of course. Such an answer is not satisfying because, first, Einstein s gravitational equations connect gravity and non. Codice articolo 5815404
Quantità: Più di 20 disponibili
Da: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germania
Buch. Condizione: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -In discussing the question of whether General Relativity Theory really needs to be quantized, a simply negative answer cannot be accepted, of course. Such an answer is not satisfying because, first, Einstein's gravitational equations connect gravity and non-gravitational matter and because, second, it can be taken for granted that non-gravitational matter has an atomic or quantum structure such that its energy-momentum tensor standing on the right-hand side of Einstein's equations is formed out of quantum operators. These two facts make it impossible to read the left-hand side of Einstein's equations as an ordinary classical function. This does not necessarily mean, however, that we must draw the conclusion that General Relativity Theory, similar to electrodynamics, could or should be quantized in a rigorous manner and that this quantization has similar consequences to quantum electrodynamics. In other words, when for reasons of consistency quantization is tried, then one has to ask whether and where the quantization procedure has a physical meaning, i.e., whether there exist measurable effects of quantum gravity. IQ accordance with these questions, we are mainly dealing with the discus sion of the principles of quantized General Relativity Theory and with the estimation of quantum effects including the question of their measurability. This analysis proves that it is impossible to distinguish between classical and quantum General Relativity Theory for the extreme case of Planck's orders of magnitude. In other words, there does not exist a physically meaningful rigorous quantization conception for Einstein's theory. 144 pp. Englisch. Codice articolo 9789027725189
Quantità: 2 disponibili
Da: AHA-BUCH GmbH, Einbeck, Germania
Buch. Condizione: Neu. Druck auf Anfrage Neuware - Printed after ordering - In discussing the question of whether General Relativity Theory really needs to be quantized, a simply negative answer cannot be accepted, of course. Such an answer is not satisfying because, first, Einstein's gravitational equations connect gravity and non-gravitational matter and because, second, it can be taken for granted that non-gravitational matter has an atomic or quantum structure such that its energy-momentum tensor standing on the right-hand side of Einstein's equations is formed out of quantum operators. These two facts make it impossible to read the left-hand side of Einstein's equations as an ordinary classical function. This does not necessarily mean, however, that we must draw the conclusion that General Relativity Theory, similar to electrodynamics, could or should be quantized in a rigorous manner and that this quantization has similar consequences to quantum electrodynamics. In other words, when for reasons of consistency quantization is tried, then one has to ask whether and where the quantization procedure has a physical meaning, i.e., whether there exist measurable effects of quantum gravity. IQ accordance with these questions, we are mainly dealing with the discus sion of the principles of quantized General Relativity Theory and with the estimation of quantum effects including the question of their measurability. This analysis proves that it is impossible to distinguish between classical and quantum General Relativity Theory for the extreme case of Planck's orders of magnitude. In other words, there does not exist a physically meaningful rigorous quantization conception for Einstein's theory. Codice articolo 9789027725189
Quantità: 1 disponibili
Da: GreatBookPrices, Columbia, MD, U.S.A.
Condizione: New. Codice articolo 3167956-n
Quantità: 5 disponibili
Da: Ria Christie Collections, Uxbridge, Regno Unito
Condizione: New. PRINT ON DEMAND Book; New; Fast Shipping from the UK. No. book. Codice articolo ria9789027725189_lsuk
Quantità: Più di 20 disponibili
Da: GreatBookPricesUK, Castle Donington, DERBY, Regno Unito
Condizione: New. Codice articolo 3167956-n
Quantità: 5 disponibili