Da: GreatBookPrices, Columbia, MD, U.S.A.
EUR 24,21
Quantità: Più di 20 disponibili
Aggiungi al carrelloCondizione: New.
Da: Lucky's Textbooks, Dallas, TX, U.S.A.
EUR 23,02
Quantità: Più di 20 disponibili
Aggiungi al carrelloCondizione: New.
Da: California Books, Miami, FL, U.S.A.
EUR 27,39
Quantità: Più di 20 disponibili
Aggiungi al carrelloCondizione: New.
Da: GreatBookPrices, Columbia, MD, U.S.A.
EUR 26,39
Quantità: Più di 20 disponibili
Aggiungi al carrelloCondizione: As New. Unread book in perfect condition.
Condizione: New. 1st edition NO-PA16APR2015-KAP.
Da: Chiron Media, Wallingford, Regno Unito
EUR 22,60
Quantità: 10 disponibili
Aggiungi al carrelloPF. Condizione: New.
Da: Ria Christie Collections, Uxbridge, Regno Unito
EUR 26,47
Quantità: Più di 20 disponibili
Aggiungi al carrelloCondizione: New. In English.
Da: GreatBookPricesUK, Woodford Green, Regno Unito
EUR 25,55
Quantità: Più di 20 disponibili
Aggiungi al carrelloCondizione: New.
Da: Revaluation Books, Exeter, Regno Unito
EUR 32,39
Quantità: 2 disponibili
Aggiungi al carrelloPaperback. Condizione: Brand New. 73 pages. 9.25x7.51x0.16 inches. In Stock.
Da: GreatBookPricesUK, Woodford Green, Regno Unito
EUR 29,34
Quantità: Più di 20 disponibili
Aggiungi al carrelloCondizione: As New. Unread book in perfect condition.
Lingua: Inglese
Editore: Springer International Publishing, 2021
ISBN 10: 3031013050 ISBN 13: 9783031013058
Da: AHA-BUCH GmbH, Einbeck, Germania
EUR 21,39
Quantità: 1 disponibili
Aggiungi al carrelloTaschenbuch. Condizione: Neu. Druck auf Anfrage Neuware - Printed after ordering - Computational analysis of natural science experiments often confronts noisy data due to natural variability in environment or measurement. Drawing conclusions in the face of such noise entails a statistical analysis. Parametric statistical methods assume that the data is a sample from a population that can be characterized by a specific distribution (e.g., a normal distribution). When the assumption is true, parametric approaches can lead to high confidence predictions. However, in many cases particular distribution assumptions do not hold. In that case, assuming a distribution may yield false conclusions. The companion book Statistics is Easy, gave a (nearly) equation-free introduction to nonparametric (i.e., no distribution assumption) statistical methods. The present book applies data preparation, machine learning, and nonparametric statistics to three quite different life science datasets. We provide the code as applied to each dataset in both R and Python 3. We also include exercises for self-study or classroom use.
Da: Buchpark, Trebbin, Germania
EUR 65,52
Quantità: 1 disponibili
Aggiungi al carrelloCondizione: Hervorragend. Zustand: Hervorragend | Sprache: Englisch | Produktart: Bücher | Keine Beschreibung verfügbar.
Da: Majestic Books, Hounslow, Regno Unito
EUR 31,22
Quantità: 4 disponibili
Aggiungi al carrelloCondizione: New. Print on Demand.
Da: Biblios, Frankfurt am main, HESSE, Germania
EUR 32,18
Quantità: 4 disponibili
Aggiungi al carrelloCondizione: New. PRINT ON DEMAND.
Lingua: Inglese
Editore: Springer International Publishing Apr 2021, 2021
ISBN 10: 3031013050 ISBN 13: 9783031013058
Da: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germania
EUR 21,39
Quantità: 2 disponibili
Aggiungi al carrelloTaschenbuch. Condizione: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Computational analysis of natural science experiments often confronts noisy data due to natural variability in environment or measurement. Drawing conclusions in the face of such noise entails a statistical analysis. Parametric statistical methods assume that the data is a sample from a population that can be characterized by a specific distribution (e.g., a normal distribution). When the assumption is true, parametric approaches can lead to high confidence predictions. However, in many cases particular distribution assumptions do not hold. In that case, assuming a distribution may yield false conclusions. The companion book Statistics is Easy, gave a (nearly) equation-free introduction to nonparametric (i.e., no distribution assumption) statistical methods. The present book applies data preparation, machine learning, and nonparametric statistics to three quite different life science datasets. We provide the code as applied to each dataset in both R and Python 3. We also include exercises for self-study or classroom use. 76 pp. Englisch.
Lingua: Inglese
Editore: Springer, Berlin|Springer International Publishing|Morgan & Claypool|Springer, 2021
ISBN 10: 3031013050 ISBN 13: 9783031013058
Da: moluna, Greven, Germania
EUR 21,57
Quantità: Più di 20 disponibili
Aggiungi al carrelloCondizione: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Computational analysis of natural science experiments often confronts noisy data due to natural variability in environment or measurement. Drawing conclusions in the face of such noise entails a statistical analysis. Parametric statistical methods assume th.
Lingua: Inglese
Editore: Springer International Publishing, Springer Apr 2021, 2021
ISBN 10: 3031013050 ISBN 13: 9783031013058
Da: buchversandmimpf2000, Emtmannsberg, BAYE, Germania
EUR 21,39
Quantità: 1 disponibili
Aggiungi al carrelloTaschenbuch. Condizione: Neu. This item is printed on demand - Print on Demand Titel. Neuware -Computational analysis of natural science experiments often confronts noisy data due to natural variability in environment or measurement. Drawing conclusions in the face of such noise entails a statistical analysis. Parametric statistical methods assume that the data is a sample from a population that can be characterized by a specific distribution (e.g., a normal distribution). When the assumption is true, parametric approaches can lead to high confidence predictions. However, in many cases particular distribution assumptions do not hold. In that case, assuming a distribution may yield false conclusions. The companion book Statistics is Easy, gave a (nearly) equation-free introduction to nonparametric (i.e., no distribution assumption) statistical methods. The present book applies data preparation, machine learning, and nonparametric statistics to three quite different life science datasets. We provide the code as applied to each dataset in both R and Python 3. We also include exercises for self-study or classroom use.Springer-Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 76 pp. Englisch.
Da: preigu, Osnabrück, Germania
EUR 21,55
Quantità: 5 disponibili
Aggiungi al carrelloTaschenbuch. Condizione: Neu. Statistics is Easy | Case Studies on Real Scientific Datasets | Manpreet Singh Katari (u. a.) | Taschenbuch | xi | Englisch | 2021 | Springer | EAN 9783031013058 | Verantwortliche Person für die EU: Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg, juergen[dot]hartmann[at]springer[dot]com | Anbieter: preigu Print on Demand.