Da: GreatBookPrices, Columbia, MD, U.S.A.
EUR 24,05
Convertire valutaQuantità: Più di 20 disponibili
Aggiungi al carrelloCondizione: New.
Da: Lucky's Textbooks, Dallas, TX, U.S.A.
EUR 22,87
Convertire valutaQuantità: Più di 20 disponibili
Aggiungi al carrelloCondizione: New.
Da: California Books, Miami, FL, U.S.A.
EUR 27,21
Convertire valutaQuantità: Più di 20 disponibili
Aggiungi al carrelloCondizione: New.
Da: Best Price, Torrance, CA, U.S.A.
EUR 19,98
Convertire valutaQuantità: 2 disponibili
Aggiungi al carrelloCondizione: New. SUPER FAST SHIPPING.
Da: GreatBookPrices, Columbia, MD, U.S.A.
EUR 26,49
Convertire valutaQuantità: Più di 20 disponibili
Aggiungi al carrelloCondizione: As New. Unread book in perfect condition.
Da: Books Puddle, New York, NY, U.S.A.
EUR 30,35
Convertire valutaQuantità: 4 disponibili
Aggiungi al carrelloCondizione: New. 1st edition NO-PA16APR2015-KAP.
Da: Chiron Media, Wallingford, Regno Unito
EUR 22,66
Convertire valutaQuantità: 10 disponibili
Aggiungi al carrelloPF. Condizione: New.
Da: Ria Christie Collections, Uxbridge, Regno Unito
EUR 27,06
Convertire valutaQuantità: Più di 20 disponibili
Aggiungi al carrelloCondizione: New. In English.
Da: GreatBookPricesUK, Woodford Green, Regno Unito
EUR 25,61
Convertire valutaQuantità: Più di 20 disponibili
Aggiungi al carrelloCondizione: New.
Da: GreatBookPricesUK, Woodford Green, Regno Unito
EUR 29,11
Convertire valutaQuantità: Più di 20 disponibili
Aggiungi al carrelloCondizione: As New. Unread book in perfect condition.
Da: Revaluation Books, Exeter, Regno Unito
EUR 32,18
Convertire valutaQuantità: 2 disponibili
Aggiungi al carrelloPaperback. Condizione: Brand New. 73 pages. 9.25x7.51x0.16 inches. In Stock.
Editore: Springer International Publishing, Springer International Publishing Apr 2021, 2021
ISBN 10: 3031013050 ISBN 13: 9783031013058
Lingua: Inglese
Da: buchversandmimpf2000, Emtmannsberg, BAYE, Germania
EUR 21,39
Convertire valutaQuantità: 2 disponibili
Aggiungi al carrelloTaschenbuch. Condizione: Neu. Neuware -Computational analysis of natural science experiments often confronts noisy data due to natural variability in environment or measurement. Drawing conclusions in the face of such noise entails a statistical analysis. Parametric statistical methods assume that the data is a sample from a population that can be characterized by a specific distribution (e.g., a normal distribution). When the assumption is true, parametric approaches can lead to high confidence predictions. However, in many cases particular distribution assumptions do not hold. In that case, assuming a distribution may yield false conclusions. The companion book Statistics is Easy, gave a (nearly) equation-free introduction to nonparametric (i.e., no distribution assumption) statistical methods. The present book applies data preparation, machine learning, and nonparametric statistics to three quite different life science datasets. We provide the code as applied to each dataset in both R and Python 3. We also include exercises for self-study or classroom use.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 76 pp. Englisch.
Editore: Springer International Publishing, 2021
ISBN 10: 3031013050 ISBN 13: 9783031013058
Lingua: Inglese
Da: AHA-BUCH GmbH, Einbeck, Germania
EUR 21,39
Convertire valutaQuantità: 1 disponibili
Aggiungi al carrelloTaschenbuch. Condizione: Neu. Druck auf Anfrage Neuware - Printed after ordering - Computational analysis of natural science experiments often confronts noisy data due to natural variability in environment or measurement. Drawing conclusions in the face of such noise entails a statistical analysis. Parametric statistical methods assume that the data is a sample from a population that can be characterized by a specific distribution (e.g., a normal distribution). When the assumption is true, parametric approaches can lead to high confidence predictions. However, in many cases particular distribution assumptions do not hold. In that case, assuming a distribution may yield false conclusions. The companion book Statistics is Easy, gave a (nearly) equation-free introduction to nonparametric (i.e., no distribution assumption) statistical methods. The present book applies data preparation, machine learning, and nonparametric statistics to three quite different life science datasets. We provide the code as applied to each dataset in both R and Python 3. We also include exercises for self-study or classroom use.
Condizione: Hervorragend. Zustand: Hervorragend | Sprache: Englisch | Produktart: Bücher.
Da: Majestic Books, Hounslow, Regno Unito
EUR 29,21
Convertire valutaQuantità: 4 disponibili
Aggiungi al carrelloCondizione: New. Print on Demand.
Da: Biblios, Frankfurt am main, HESSE, Germania
EUR 31,15
Convertire valutaQuantità: 4 disponibili
Aggiungi al carrelloCondizione: New. PRINT ON DEMAND.
Editore: Springer International Publishing Apr 2021, 2021
ISBN 10: 3031013050 ISBN 13: 9783031013058
Lingua: Inglese
Da: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germania
EUR 21,39
Convertire valutaQuantità: 2 disponibili
Aggiungi al carrelloTaschenbuch. Condizione: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Computational analysis of natural science experiments often confronts noisy data due to natural variability in environment or measurement. Drawing conclusions in the face of such noise entails a statistical analysis. Parametric statistical methods assume that the data is a sample from a population that can be characterized by a specific distribution (e.g., a normal distribution). When the assumption is true, parametric approaches can lead to high confidence predictions. However, in many cases particular distribution assumptions do not hold. In that case, assuming a distribution may yield false conclusions. The companion book Statistics is Easy, gave a (nearly) equation-free introduction to nonparametric (i.e., no distribution assumption) statistical methods. The present book applies data preparation, machine learning, and nonparametric statistics to three quite different life science datasets. We provide the code as applied to each dataset in both R and Python 3. We also include exercises for self-study or classroom use. 76 pp. Englisch.
Editore: Springer, Berlin|Springer International Publishing|Morgan & Claypool|Springer, 2021
ISBN 10: 3031013050 ISBN 13: 9783031013058
Lingua: Inglese
Da: moluna, Greven, Germania
EUR 21,57
Convertire valutaQuantità: Più di 20 disponibili
Aggiungi al carrelloCondizione: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Computational analysis of natural science experiments often confronts noisy data due to natural variability in environment or measurement. Drawing conclusions in the face of such noise entails a statistical analysis. Parametric statistical methods assume th.