EUR 216,49
Quantità: Più di 20 disponibili
Aggiungi al carrelloCondizione: New.
EUR 220,65
Quantità: Più di 20 disponibili
Aggiungi al carrelloCondizione: As New. Unread book in perfect condition.
Lingua: Inglese
Editore: H N H International Limited, 2024
ISBN 10: 103284082X ISBN 13: 9781032840826
Da: Majestic Books, Hounslow, Regno Unito
EUR 226,56
Quantità: 3 disponibili
Aggiungi al carrelloCondizione: New. pp. 142.
EUR 221,23
Quantità: Più di 20 disponibili
Aggiungi al carrelloCondizione: As New. Unread book in perfect condition.
EUR 189,92
Quantità: Più di 20 disponibili
Aggiungi al carrelloCondizione: New.
EUR 227,29
Quantità: Più di 20 disponibili
Aggiungi al carrelloCondizione: New.
Lingua: Inglese
Editore: H N H International Limited, 2024
ISBN 10: 103284082X ISBN 13: 9781032840826
Da: Books Puddle, New York, NY, U.S.A.
Condizione: New. pp. 142 1st edition NO-PA16APR2015-KAP.
EUR 246,70
Quantità: Più di 20 disponibili
Aggiungi al carrelloCondizione: New.
EUR 233,50
Quantità: Più di 20 disponibili
Aggiungi al carrelloCondizione: New. In.
Lingua: Inglese
Editore: H N H International Limited, 2024
ISBN 10: 103284082X ISBN 13: 9781032840826
Da: Biblios, Frankfurt am main, HESSE, Germania
EUR 255,95
Quantità: 3 disponibili
Aggiungi al carrelloCondizione: New. pp. 142.
EUR 320,57
Quantità: 2 disponibili
Aggiungi al carrelloHardcover. Condizione: Brand New. 152 pages. 9.19x6.13x9.21 inches. In Stock.
Lingua: Inglese
Editore: Taylor & Francis Ltd, London, 2024
ISBN 10: 103284082X ISBN 13: 9781032840826
Da: CitiRetail, Stevenage, Regno Unito
EUR 169,54
Quantità: 1 disponibili
Aggiungi al carrelloHardcover. Condizione: new. Hardcover. This book dives into the inner workings of recommender systems, those ubiquitous technologies that shape our online experiences. From Netflix show suggestions to personalized product recommendations on Amazon or the endless stream of curated YouTube videos, these systems power the choices we see every day.Collaborative filtering reigns supreme as the dominant approach behind recommender systems. This book offers a comprehensive exploration of this topic, starting with memory-based techniques. These methods, known for their ease of understanding and implementation, provide a solid foundation for understanding collaborative filtering. As you progress, youll delve into latent factor models, the abstract and mathematical engines driving modern recommender systems.The journey continues with exploring the concepts of metadata and diversity. Youll discover how metadata, the additional information gathered by the system, can be harnessed to refine recommendations. Additionally, the book delves into techniques for promoting diversity, ensuring a well-balanced selection of recommendations. Finally, the book concludes with a discussion of cutting-edge deep learning models used in recommender systems.This book caters to a dual audience. First, it serves as a primer for practicing IT professionals or data scientists eager to explore the realm of recommender systems. The book assumes a basic understanding of linear algebra and optimization but requires no prior knowledge of machine learning or programming. This makes it an accessible read for those seeking to enter this exciting field. Second, the book can be used as a textbook for a graduate-level course. To facilitate this, the final chapter provides instructors with a potential course plan.Key features: This is the only book covering 25 years of research on this topic starting from late 90s to the current year. This book is accessible to anyone with a basic knowledge of linear algebra, unlike other volumes that require knowledge of advanced data analytics. It covers a wider range of topics than other books. Most others are research oriented and delves deep into a narrow area. This is the only book written to be a textbook on collaborative filtering and recommender systems. The book emphasizes on algorithms and not implementation. This makes it agnostic to programming languages. The reader is free to use whatever they are comfortable in, such as Python, R, Matlab, Java, etc. This book dives into the inner workings of recommender systems, those ubiquitous technologies that shape our online experiences. From Netflix show suggestions to personalized product recommendations on Amazon or the endless stream of curated YouTube videos, these systems power the choices we see every day. This item is printed on demand. Shipping may be from our UK warehouse or from our Australian or US warehouses, depending on stock availability.
Da: preigu, Osnabrück, Germania
EUR 264,55
Quantità: 5 disponibili
Aggiungi al carrelloBuch. Condizione: Neu. Collaborative Filtering | Recommender Systems | Angshul Majumdar | Buch | Einband - fest (Hardcover) | Englisch | 2024 | CRC Press | EAN 9781032840826 | Verantwortliche Person für die EU: Libri GmbH, Europaallee 1, 36244 Bad Hersfeld, gpsr[at]libri[dot]de | Anbieter: preigu Print on Demand.
Da: AHA-BUCH GmbH, Einbeck, Germania
EUR 314,64
Quantità: 1 disponibili
Aggiungi al carrelloBuch. Condizione: Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - This book dives into the inner workings of recommender systems, those ubiquitous technologies that shape our online experiences. From Netflix show suggestions to personalized product recommendations on Amazon or the endless stream of curated YouTube videos, these systems power the choices we see every day.