Editore: LAP LAMBERT Academic Publishing, 2023
ISBN 10: 6206158608 ISBN 13: 9786206158608
Lingua: Inglese
Da: Books Puddle, New York, NY, U.S.A.
Condizione: New.
Editore: LAP LAMBERT Academic Publishing Apr 2023, 2023
ISBN 10: 6206158608 ISBN 13: 9786206158608
Lingua: Inglese
Da: buchversandmimpf2000, Emtmannsberg, BAYE, Germania
EUR 43,90
Quantità: 2 disponibili
Aggiungi al carrelloTaschenbuch. Condizione: Neu. Neuware Books on Demand GmbH, Überseering 33, 22297 Hamburg 60 pp. Englisch.
Editore: LAP LAMBERT Academic Publishing, 2023
ISBN 10: 6206158608 ISBN 13: 9786206158608
Lingua: Inglese
Da: preigu, Osnabrück, Germania
EUR 40,00
Quantità: 5 disponibili
Aggiungi al carrelloTaschenbuch. Condizione: Neu. Building models for Auction systems | fraud detection system | Sivaji U | Taschenbuch | Englisch | 2023 | LAP LAMBERT Academic Publishing | EAN 9786206158608 | Verantwortliche Person für die EU: preigu GmbH & Co. KG, Lengericher Landstr. 19, 49078 Osnabrück, mail[at]preigu[dot]de | Anbieter: preigu.
Editore: LAP LAMBERT Academic Publishing, 2023
ISBN 10: 6206158608 ISBN 13: 9786206158608
Lingua: Inglese
Da: Majestic Books, Hounslow, Regno Unito
EUR 61,01
Quantità: 4 disponibili
Aggiungi al carrelloCondizione: New. Print on Demand.
Editore: LAP LAMBERT Academic Publishing Apr 2023, 2023
ISBN 10: 6206158608 ISBN 13: 9786206158608
Lingua: Inglese
Da: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germania
EUR 43,90
Quantità: 2 disponibili
Aggiungi al carrelloTaschenbuch. Condizione: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -we build online models for the auction fraud moderation and detection system designed for a major Asian online auction website. By empirical experiments on a realword online auction fraud detection data, we show that our proposed online probit model framework, which combines online feature selection, bounding coefficients from expert knowledge and multiple instance learning, can significantlyimprove over baselines and the human-tuned model. Note that this online modeling framework can be easily extended to many other applications, such as web spam detection, content optimization and so forth. Regarding to future work, one direction is to include the adjustment of the selection bias in the online model training process. It has been proven to be very effective for offline models . 60 pp. Englisch.
Editore: LAP LAMBERT Academic Publishing, 2023
ISBN 10: 6206158608 ISBN 13: 9786206158608
Lingua: Inglese
Da: Biblios, Frankfurt am main, HESSE, Germania
EUR 62,34
Quantità: 4 disponibili
Aggiungi al carrelloCondizione: New. PRINT ON DEMAND.
Editore: LAP LAMBERT Academic Publishing, 2023
ISBN 10: 6206158608 ISBN 13: 9786206158608
Lingua: Inglese
Da: moluna, Greven, Germania
EUR 35,62
Quantità: Più di 20 disponibili
Aggiungi al carrelloCondizione: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Autor/Autorin: U Dr. SIVAJIDr.U.Sivaji is currently the Associate Professor of Information Technology at the Institute of Aeronautical Engineering, Dundigal, Hyderabad. His current research interests include software Engineering, Machine Learning ,.
Editore: LAP LAMBERT Academic Publishing, 2023
ISBN 10: 6206158608 ISBN 13: 9786206158608
Lingua: Inglese
Da: AHA-BUCH GmbH, Einbeck, Germania
EUR 44,59
Quantità: 1 disponibili
Aggiungi al carrelloTaschenbuch. Condizione: Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - we build online models for the auction fraud moderation and detection system designed for a major Asian online auction website. By empirical experiments on a realword online auction fraud detection data, we show that our proposed online probit model framework, which combines online feature selection, bounding coefficients from expert knowledge and multiple instance learning, can significantlyimprove over baselines and the human-tuned model. Note that this online modeling framework can be easily extended to many other applications, such as web spam detection, content optimization and so forth. Regarding to future work, one direction is to include the adjustment of the selection bias in the online model training process. It has been proven to be very effective for offline models .