Da: Books Puddle, New York, NY, U.S.A.
EUR 134,68
Convertire valutaQuantità: 1 disponibili
Aggiungi al carrelloCondizione: New. 1st ed. 2022 edition NO-PA16APR2015-KAP.
Da: Majestic Books, Hounslow, Regno Unito
EUR 139,81
Convertire valutaQuantità: 1 disponibili
Aggiungi al carrelloCondizione: New.
Da: Biblios, Frankfurt am main, HESSE, Germania
EUR 141,15
Convertire valutaQuantità: 1 disponibili
Aggiungi al carrelloCondizione: New.
Da: Lucky's Textbooks, Dallas, TX, U.S.A.
EUR 164,37
Convertire valutaQuantità: Più di 20 disponibili
Aggiungi al carrelloCondizione: New.
Da: Ria Christie Collections, Uxbridge, Regno Unito
EUR 157,80
Convertire valutaQuantità: Più di 20 disponibili
Aggiungi al carrelloCondizione: New. In.
Da: Ria Christie Collections, Uxbridge, Regno Unito
EUR 157,80
Convertire valutaQuantità: Più di 20 disponibili
Aggiungi al carrelloCondizione: New. In.
Editore: Springer Nature Singapore, Springer Nature Singapore, 2023
ISBN 10: 981163422X ISBN 13: 9789811634222
Lingua: Inglese
Da: AHA-BUCH GmbH, Einbeck, Germania
EUR 162,91
Convertire valutaQuantità: 1 disponibili
Aggiungi al carrelloTaschenbuch. Condizione: Neu. Druck auf Anfrage Neuware - Printed after ordering - This book presents the state of the art in distributed machine learning algorithms that are based on gradient optimization methods. In the big data era, large-scale datasets pose enormous challenges for the existing machine learning systems. As such, implementing machine learning algorithms in a distributed environment has become a key technology, and recent research has shown gradient-based iterative optimization to be an effective solution. Focusing on methods that can speed up large-scale gradient optimization through both algorithm optimizations and careful system implementations, the book introduces three essential techniques in designing a gradient optimization algorithm to train a distributed machine learning model: parallel strategy, data compression and synchronization protocol.Written in a tutorial style, it covers a range of topics, from fundamental knowledge to a number of carefully designed algorithms and systems of distributed machine learning. It will appealto a broad audience in the field of machine learning, artificial intelligence, big data and database management.
Editore: Springer Nature Singapore, Springer Nature Singapore, 2022
ISBN 10: 981163419X ISBN 13: 9789811634192
Lingua: Inglese
Da: AHA-BUCH GmbH, Einbeck, Germania
EUR 162,91
Convertire valutaQuantità: 1 disponibili
Aggiungi al carrelloBuch. Condizione: Neu. Druck auf Anfrage Neuware - Printed after ordering - This book presents the state of the art in distributed machine learning algorithms that are based on gradient optimization methods. In the big data era, large-scale datasets pose enormous challenges for the existing machine learning systems. As such, implementing machine learning algorithms in a distributed environment has become a key technology, and recent research has shown gradient-based iterative optimization to be an effective solution. Focusing on methods that can speed up large-scale gradient optimization through both algorithm optimizations and careful system implementations, the book introduces three essential techniques in designing a gradient optimization algorithm to train a distributed machine learning model: parallel strategy, data compression and synchronization protocol.Written in a tutorial style, it covers a range of topics, from fundamental knowledge to a number of carefully designed algorithms and systems of distributed machine learning. It will appealto a broad audience in the field of machine learning, artificial intelligence, big data and database management.
Da: California Books, Miami, FL, U.S.A.
EUR 202,57
Convertire valutaQuantità: Più di 20 disponibili
Aggiungi al carrelloCondizione: New.
Da: Russell Books, Victoria, BC, Canada
EUR 211,30
Convertire valutaQuantità: Più di 20 disponibili
Aggiungi al carrellopaperback. Condizione: New. 1st ed. 2022. Special order direct from the distributor.
Da: Revaluation Books, Exeter, Regno Unito
EUR 240,76
Convertire valutaQuantità: 2 disponibili
Aggiungi al carrelloPaperback. Condizione: Brand New. 180 pages. 9.25x6.10x0.39 inches. In Stock.
EUR 242,76
Convertire valutaQuantità: 2 disponibili
Aggiungi al carrelloHardcover. Condizione: Brand New. 180 pages. 9.25x6.10x0.50 inches. In Stock.
Editore: Springer Nature Singapore Feb 2023, 2023
ISBN 10: 981163422X ISBN 13: 9789811634222
Lingua: Inglese
Da: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germania
EUR 160,49
Convertire valutaQuantità: 2 disponibili
Aggiungi al carrelloTaschenbuch. Condizione: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -This book presents the state of the art in distributed machine learning algorithms that are based on gradient optimization methods. In the big data era, large-scale datasets pose enormous challenges for the existing machine learning systems. As such, implementing machine learning algorithms in a distributed environment has become a key technology, and recent research has shown gradient-based iterative optimization to be an effective solution. Focusing on methods that can speed up large-scale gradient optimization through both algorithm optimizations and careful system implementations, the book introduces three essential techniques in designing a gradient optimization algorithm to train a distributed machine learning model: parallel strategy, data compression and synchronization protocol.Written in a tutorial style, it covers a range of topics, from fundamental knowledge to a number of carefully designed algorithms and systems of distributed machine learning. It will appealto a broad audience in the field of machine learning, artificial intelligence, big data and database management. 184 pp. Englisch.
Editore: Springer Nature Singapore Feb 2022, 2022
ISBN 10: 981163419X ISBN 13: 9789811634192
Lingua: Inglese
Da: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germania
EUR 160,49
Convertire valutaQuantità: 2 disponibili
Aggiungi al carrelloBuch. Condizione: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -This book presents the state of the art in distributed machine learning algorithms that are based on gradient optimization methods. In the big data era, large-scale datasets pose enormous challenges for the existing machine learning systems. As such, implementing machine learning algorithms in a distributed environment has become a key technology, and recent research has shown gradient-based iterative optimization to be an effective solution. Focusing on methods that can speed up large-scale gradient optimization through both algorithm optimizations and careful system implementations, the book introduces three essential techniques in designing a gradient optimization algorithm to train a distributed machine learning model: parallel strategy, data compression and synchronization protocol.Written in a tutorial style, it covers a range of topics, from fundamental knowledge to a number of carefully designed algorithms and systems of distributed machine learning. It will appealto a broad audience in the field of machine learning, artificial intelligence, big data and database management. 184 pp. Englisch.
Editore: Springer, Berlin|Springer Nature Singapore|Springer, 2023
ISBN 10: 981163422X ISBN 13: 9789811634222
Lingua: Inglese
Da: moluna, Greven, Germania
EUR 136,16
Convertire valutaQuantità: Più di 20 disponibili
Aggiungi al carrelloCondizione: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. This book presents the state of the art in distributed machine learning algorithms that are based on gradient optimization methods. In the big data era, large-scale datasets pose enormous challenges for the existing machine learning systems. As such, imp.
Editore: Springer, Berlin|Springer Nature Singapore|Springer, 2021
ISBN 10: 981163419X ISBN 13: 9789811634192
Lingua: Inglese
Da: moluna, Greven, Germania
EUR 136,16
Convertire valutaQuantità: Più di 20 disponibili
Aggiungi al carrelloGebunden. Condizione: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. This book presents the state of the art in distributed machine learning algorithms that are based on gradient optimization methods. In the big data era, large-scale datasets pose enormous challenges for the existing machine learning systems. As such, imp.