Da: Ria Christie Collections, Uxbridge, Regno Unito
EUR 34,24
Quantità: Più di 20 disponibili
Aggiungi al carrelloCondizione: New. In.
EUR 35,90
Quantità: 5 disponibili
Aggiungi al carrelloTaschenbuch. Condizione: Neu. Multi-objektive evolutionäre Algorithmen für neuronale Spitzennetze | Abdulrazak Yahya Saleh | Taschenbuch | 60 S. | Deutsch | 2025 | Verlag Unser Wissen | EAN 9786208557515 | Verantwortliche Person für die EU: BoD - Books on Demand, In de Tarpen 42, 22848 Norderstedt, info[at]bod[dot]de | Anbieter: preigu.
Editore: Verlag Unser Wissen Jan 2025, 2025
ISBN 10: 6208557518 ISBN 13: 9786208557515
Lingua: Tedesco
Da: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germania
EUR 35,90
Quantità: 2 disponibili
Aggiungi al carrelloTaschenbuch. Condizione: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware 60 pp. Deutsch.
Editore: Verlag Unser Wissen Jan 2025, 2025
ISBN 10: 6208557518 ISBN 13: 9786208557515
Lingua: Tedesco
Da: buchversandmimpf2000, Emtmannsberg, BAYE, Germania
EUR 35,90
Quantità: 1 disponibili
Aggiungi al carrelloTaschenbuch. Condizione: Neu. This item is printed on demand - Print on Demand Titel. Neuware -Das Spiking Neural Network (SNN) spielt eine wichtige Rolle bei Klassifizierungsproblemen. Obwohl es viele SNN-Modelle gibt, wird das Evolving Spiking Neural Network (ESNN) in vielen aktuellen Forschungsarbeiten verwendet. Evolutionäre Algorithmen, vor allem die differentielle Evolution (DE), wurden zur Verbesserung des ESNN-Algorithmus eingesetzt. Viele reale Optimierungsprobleme beinhalten jedoch mehrere widersprüchliche Ziele. In diesem Buch wurden Harmony Search (HS) und der memetische Ansatz verwendet, um die Leistung von MOO mit ESNN zu verbessern. Folglich wurde Memetic Harmony Search Multi-Objective Differential Evolution with Evolving Spiking Neural Network (MEHSMODE-ESNN) angewendet, um die ESNN-Struktur und die Genauigkeitsraten zu verbessern. Standarddatensätze aus dem maschinellen Lernen der UCI werden für die Bewertung der Leistung dieses verbesserten hybriden Mehrzielmodells verwendet. Die experimentellen Ergebnisse haben gezeigt, dass das Memetic Harmony Search Multi-Objective Differential Evolution with Evolving Spiking Neural Network (MEHSMODE-ESNN) bessere Ergebnisse in Bezug auf Genauigkeit und Netzwerkstruktur liefert.VDM Verlag, Dudweiler Landstraße 99, 66123 Saarbrücken 60 pp. Deutsch.
Da: AHA-BUCH GmbH, Einbeck, Germania
EUR 35,90
Quantità: 1 disponibili
Aggiungi al carrelloTaschenbuch. Condizione: Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - Das Spiking Neural Network (SNN) spielt eine wichtige Rolle bei Klassifizierungsproblemen. Obwohl es viele SNN-Modelle gibt, wird das Evolving Spiking Neural Network (ESNN) in vielen aktuellen Forschungsarbeiten verwendet. Evolutionäre Algorithmen, vor allem die differentielle Evolution (DE), wurden zur Verbesserung des ESNN-Algorithmus eingesetzt. Viele reale Optimierungsprobleme beinhalten jedoch mehrere widersprüchliche Ziele. In diesem Buch wurden Harmony Search (HS) und der memetische Ansatz verwendet, um die Leistung von MOO mit ESNN zu verbessern. Folglich wurde Memetic Harmony Search Multi-Objective Differential Evolution with Evolving Spiking Neural Network (MEHSMODE-ESNN) angewendet, um die ESNN-Struktur und die Genauigkeitsraten zu verbessern. Standarddatensätze aus dem maschinellen Lernen der UCI werden für die Bewertung der Leistung dieses verbesserten hybriden Mehrzielmodells verwendet. Die experimentellen Ergebnisse haben gezeigt, dass das Memetic Harmony Search Multi-Objective Differential Evolution with Evolving Spiking Neural Network (MEHSMODE-ESNN) bessere Ergebnisse in Bezug auf Genauigkeit und Netzwerkstruktur liefert.