Da: Majestic Books, Hounslow, Regno Unito
EUR 136,90
Quantità: 3 disponibili
Aggiungi al carrelloCondizione: New. pp. 270.
Condizione: New. pp. 270.
Da: GreatBookPrices, Columbia, MD, U.S.A.
EUR 161,37
Quantità: Più di 20 disponibili
Aggiungi al carrelloCondizione: New.
Lingua: Inglese
Editore: Elsevier Science Publishing Co Inc, 2020
ISBN 10: 0128222263 ISBN 13: 9780128222263
Da: THE SAINT BOOKSTORE, Southport, Regno Unito
EUR 148,16
Quantità: Più di 20 disponibili
Aggiungi al carrelloPaperback / softback. Condizione: New. New copy - Usually dispatched within 4 working days.
Da: Biblios, Frankfurt am main, HESSE, Germania
EUR 152,51
Quantità: 3 disponibili
Aggiungi al carrelloCondizione: New. pp. 270.
Da: Ria Christie Collections, Uxbridge, Regno Unito
EUR 162,75
Quantità: Più di 20 disponibili
Aggiungi al carrelloCondizione: New. In.
Da: GreatBookPricesUK, Woodford Green, Regno Unito
EUR 160,66
Quantità: Più di 20 disponibili
Aggiungi al carrelloCondizione: New.
Da: GreatBookPrices, Columbia, MD, U.S.A.
EUR 182,54
Quantità: Più di 20 disponibili
Aggiungi al carrelloCondizione: As New. Unread book in perfect condition.
Da: preigu, Osnabrück, Germania
EUR 122,05
Quantità: 5 disponibili
Aggiungi al carrelloTaschenbuch. Condizione: Neu. Trends in Deep Learning Methodologies | Algorithms, Applications, and Systems | Vincenzo Piuri (u. a.) | Taschenbuch | Einband - flex.(Paperback) | Englisch | 2020 | Academic Press | EAN 9780128222263 | Verantwortliche Person für die EU: preigu GmbH & Co. KG, Lengericher Landstr. 19, 49078 Osnabrück, mail[at]preigu[dot]de | Anbieter: preigu.
Da: GreatBookPricesUK, Woodford Green, Regno Unito
EUR 184,52
Quantità: Più di 20 disponibili
Aggiungi al carrelloCondizione: As New. Unread book in perfect condition.
Da: Brook Bookstore On Demand, Napoli, NA, Italia
EUR 118,91
Quantità: Più di 20 disponibili
Aggiungi al carrelloCondizione: new. Questo è un articolo print on demand.
Lingua: Inglese
Editore: Elsevier Science & Technology, Academic Press, 2020
ISBN 10: 0128222263 ISBN 13: 9780128222263
Da: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germania
EUR 132,00
Quantità: 2 disponibili
Aggiungi al carrelloTaschenbuch. Condizione: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Trends in Deep Learning Methodologies: Algorithms, Applications, and Systems covers deep learning approaches such as neural networks, deep belief networks, recurrent neural networks, convolutional neural networks, deep auto-encoder, and deep generative networks, which have emerged as powerful computational models. Chapters elaborate on these models which have shown significant success in dealing with massive data for a large number of applications, given their capacity to extract complex hidden features and learn efficient representation in unsupervised settings. Chapters investigate deep learning-based algorithms in a variety of application, including biomedical and health informatics, computer vision, image processing, and more. In recent years, many powerful algorithms have been developed for matching patterns in data and making predictions about future events. The major advantage of deep learning is to process big data analytics for better analysis and self-adaptive algorithms to handle more data. Deep learning methods can deal with multiple levels of representation in which the system learns to abstract higher level representations of raw data. Earlier, it was a common requirement to have a domain expert to develop a specific model for each specific application, however, recent advancements in representation learning algorithms allow researchers across various subject domains to automatically learn the patterns and representation of the given data for the development of specific models. Englisch.
Da: Revaluation Books, Exeter, Regno Unito
EUR 136,12
Quantità: 2 disponibili
Aggiungi al carrelloPaperback. Condizione: Brand New. 288 pages. 8.75x6.00x0.75 inches. In Stock. This item is printed on demand.
Lingua: Inglese
Editore: Elsevier Science & Technology|Academic Press, 2020
ISBN 10: 0128222263 ISBN 13: 9780128222263
Da: moluna, Greven, Germania
EUR 130,54
Quantità: Più di 20 disponibili
Aggiungi al carrelloCondizione: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Trends in Deep Learning Methodologies: Algorithms, Applications, and Systems covers deep learning approaches such as neural networks, deep belief networks, recurrent neural networks, convolutional neural networks, deep auto-encoder, and deep gener.
Lingua: Inglese
Editore: Elsevier Science & Technology, Academic Press, 2020
ISBN 10: 0128222263 ISBN 13: 9780128222263
Da: AHA-BUCH GmbH, Einbeck, Germania
EUR 146,74
Quantità: 2 disponibili
Aggiungi al carrelloTaschenbuch. Condizione: Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - Trends in Deep Learning Methodologies: Algorithms, Applications, and Systems covers deep learning approaches such as neural networks, deep belief networks, recurrent neural networks, convolutional neural networks, deep auto-encoder, and deep generative networks, which have emerged as powerful computational models. Chapters elaborate on these models which have shown significant success in dealing with massive data for a large number of applications, given their capacity to extract complex hidden features and learn efficient representation in unsupervised settings. Chapters investigate deep learning-based algorithms in a variety of application, including biomedical and health informatics, computer vision, image processing, and more. In recent years, many powerful algorithms have been developed for matching patterns in data and making predictions about future events. The major advantage of deep learning is to process big data analytics for better analysis and self-adaptive algorithms to handle more data. Deep learning methods can deal with multiple levels of representation in which the system learns to abstract higher level representations of raw data. Earlier, it was a common requirement to have a domain expert to develop a specific model for each specific application, however, recent advancements in representation learning algorithms allow researchers across various subject domains to automatically learn the patterns and representation of the given data for the development of specific models.