Editore: Princeton University Press, 2019
ISBN 10: 0691182140 ISBN 13: 9780691182148
Lingua: Inglese
Da: PlumCircle, West Mifflin, PA, U.S.A.
EUR 23,42
Convertire valutaQuantità: 1 disponibili
Aggiungi al carrellopaperback. Condizione: Fine. Publisher overstock. May have remainder mark / minimal shelfwear. 99% of orders arrive in 4-10 days. Discounted shipping on multiple books.
Editore: Princeton University Press, 2019
ISBN 10: 0691182140 ISBN 13: 9780691182148
Lingua: Inglese
Da: PlumCircle, West Mifflin, PA, U.S.A.
EUR 32,56
Convertire valutaQuantità: 6 disponibili
Aggiungi al carrellopaperback. Condizione: New. New item in gift quality condition. 99% of orders arrive in 4-10 days. Discounted shipping on multiple books.
Editore: Princeton University Press, 2019
ISBN 10: 0691182140 ISBN 13: 9780691182148
Lingua: Inglese
Da: Labyrinth Books, Princeton, NJ, U.S.A.
EUR 42,66
Convertire valutaQuantità: 1 disponibili
Aggiungi al carrelloCondizione: New.
Editore: Princeton University Press, 2019
ISBN 10: 0691182140 ISBN 13: 9780691182148
Lingua: Inglese
Da: GreatBookPrices, Columbia, MD, U.S.A.
EUR 70,38
Convertire valutaQuantità: 1 disponibili
Aggiungi al carrelloCondizione: New.
Editore: Princeton University Press, 2019
ISBN 10: 0691182132 ISBN 13: 9780691182131
Lingua: Inglese
Da: Labyrinth Books, Princeton, NJ, U.S.A.
EUR 71,40
Convertire valutaQuantità: 1 disponibili
Aggiungi al carrelloCondizione: New.
Editore: Princeton University Press, 2019
ISBN 10: 0691182140 ISBN 13: 9780691182148
Lingua: Inglese
Da: GreatBookPrices, Columbia, MD, U.S.A.
EUR 79,72
Convertire valutaQuantità: 1 disponibili
Aggiungi al carrelloCondizione: As New. Unread book in perfect condition.
Editore: Princeton University Press, 2019
ISBN 10: 0691182140 ISBN 13: 9780691182148
Lingua: Inglese
Da: GreatBookPricesUK, Woodford Green, Regno Unito
EUR 75,28
Convertire valutaQuantità: 10 disponibili
Aggiungi al carrelloCondizione: New.
Editore: Princeton University Press, 2019
ISBN 10: 0691182140 ISBN 13: 9780691182148
Lingua: Inglese
Da: Best Price, Torrance, CA, U.S.A.
EUR 85,13
Convertire valutaQuantità: 1 disponibili
Aggiungi al carrelloCondizione: New. SUPER FAST SHIPPING.
Editore: Princeton University Press, 2019
ISBN 10: 0691182140 ISBN 13: 9780691182148
Lingua: Inglese
Da: Lucky's Textbooks, Dallas, TX, U.S.A.
EUR 90,77
Convertire valutaQuantità: 6 disponibili
Aggiungi al carrelloCondizione: New.
Editore: Princeton University Press, US, 2019
ISBN 10: 0691182140 ISBN 13: 9780691182148
Lingua: Inglese
Da: Rarewaves.com USA, London, LONDO, Regno Unito
EUR 97,28
Convertire valutaQuantità: 4 disponibili
Aggiungi al carrelloPaperback. Condizione: New. A central concern of number theory is the study of local-to-global principles, which describe the behavior of a global field K in terms of the behavior of various completions of K. This book looks at a specific example of a local-to-global principle: Weil's conjecture on the Tamagawa number of a semisimple algebraic group G over K. In the case where K is the function field of an algebraic curve X, this conjecture counts the number of G-bundles on X (global information) in terms of the reduction of G at the points of X (local information). The goal of this book is to give a conceptual proof of Weil's conjecture, based on the geometry of the moduli stack of G-bundles. Inspired by ideas from algebraic topology, it introduces a theory of factorization homology in the setting ?-adic sheaves. Using this theory, Dennis Gaitsgory and Jacob Lurie articulate a different local-to-global principle: a product formula that expresses the cohomology of the moduli stack of G-bundles (a global object) as a tensor product of local factors.Using a version of the Grothendieck-Lefschetz trace formula, Gaitsgory and Lurie show that this product formula implies Weil's conjecture. The proof of the product formula will appear in a sequel volume.
Editore: Princeton University Press, 2019
ISBN 10: 0691182140 ISBN 13: 9780691182148
Lingua: Inglese
Da: THE SAINT BOOKSTORE, Southport, Regno Unito
EUR 84,92
Convertire valutaQuantità: 8 disponibili
Aggiungi al carrelloPaperback / softback. Condizione: New. New copy - Usually dispatched within 4 working days. 526.
Editore: Princeton University Press, 2019
ISBN 10: 0691182140 ISBN 13: 9780691182148
Lingua: Inglese
Da: GreatBookPricesUK, Woodford Green, Regno Unito
EUR 81,34
Convertire valutaQuantità: 10 disponibili
Aggiungi al carrelloCondizione: As New. Unread book in perfect condition.
Editore: Princeton University Press, 2019
ISBN 10: 0691182140 ISBN 13: 9780691182148
Lingua: Inglese
Da: Ria Christie Collections, Uxbridge, Regno Unito
EUR 85,93
Convertire valutaQuantità: 8 disponibili
Aggiungi al carrelloCondizione: New. In.
Editore: Princeton University Press, 2019
ISBN 10: 0691182140 ISBN 13: 9780691182148
Lingua: Inglese
Da: Majestic Books, Hounslow, Regno Unito
EUR 93,00
Convertire valutaQuantità: 3 disponibili
Aggiungi al carrelloCondizione: New. pp. 320.
Editore: Princeton University Press, US, 2019
ISBN 10: 0691182140 ISBN 13: 9780691182148
Lingua: Inglese
Da: Rarewaves USA, OSWEGO, IL, U.S.A.
EUR 102,20
Convertire valutaQuantità: 13 disponibili
Aggiungi al carrelloPaperback. Condizione: New. A central concern of number theory is the study of local-to-global principles, which describe the behavior of a global field K in terms of the behavior of various completions of K. This book looks at a specific example of a local-to-global principle: Weil's conjecture on the Tamagawa number of a semisimple algebraic group G over K. In the case where K is the function field of an algebraic curve X, this conjecture counts the number of G-bundles on X (global information) in terms of the reduction of G at the points of X (local information). The goal of this book is to give a conceptual proof of Weil's conjecture, based on the geometry of the moduli stack of G-bundles. Inspired by ideas from algebraic topology, it introduces a theory of factorization homology in the setting ?-adic sheaves. Using this theory, Dennis Gaitsgory and Jacob Lurie articulate a different local-to-global principle: a product formula that expresses the cohomology of the moduli stack of G-bundles (a global object) as a tensor product of local factors.Using a version of the Grothendieck-Lefschetz trace formula, Gaitsgory and Lurie show that this product formula implies Weil's conjecture. The proof of the product formula will appear in a sequel volume.
Editore: Princeton University Press, 2019
ISBN 10: 0691182140 ISBN 13: 9780691182148
Lingua: Inglese
Da: Books Puddle, New York, NY, U.S.A.
EUR 103,04
Convertire valutaQuantità: 3 disponibili
Aggiungi al carrelloCondizione: New. pp. 320.
Editore: Princeton University Press, New Jersey, 2019
ISBN 10: 0691182140 ISBN 13: 9780691182148
Lingua: Inglese
Da: Grand Eagle Retail, Mason, OH, U.S.A.
EUR 109,90
Convertire valutaQuantità: 1 disponibili
Aggiungi al carrelloPaperback. Condizione: new. Paperback. A central concern of number theory is the study of local-to-global principles, which describe the behavior of a global field K in terms of the behavior of various completions of K. This book looks at a specific example of a local-to-global principle: Weil's conjecture on the Tamagawa number of a semisimple algebraic group G over K. In the case where K is the function field of an algebraic curve X, this conjecture counts the number of G-bundles on X (global information) in terms of the reduction of G at the points of X (local information). The goal of this book is to give a conceptual proof of Weil's conjecture, based on the geometry of the moduli stack of G-bundles. Inspired by ideas from algebraic topology, it introduces a theory of factorization homology in the setting -adic sheaves. Using this theory, Dennis Gaitsgory and Jacob Lurie articulate a different local-to-global principle: a product formula that expresses the cohomology of the moduli stack of G-bundles (a global object) as a tensor product of local factors.Using a version of the Grothendieck-Lefschetz trace formula, Gaitsgory and Lurie show that this product formula implies Weil's conjecture. The proof of the product formula will appear in a sequel volume. A central concern of number theory is the study of local-to-global principles, which describe the behavior of a global field K in terms of the behavior of various completions of K. This book looks at a specific example of a local-to-global principle: Weil's conjecture on the Tamagawa number of a semisimple algebraic group G over K. In the case wher Shipping may be from multiple locations in the US or from the UK, depending on stock availability.
Editore: Princeton University Press, US, 2019
ISBN 10: 0691182140 ISBN 13: 9780691182148
Lingua: Inglese
Da: Rarewaves USA United, OSWEGO, IL, U.S.A.
EUR 104,44
Convertire valutaQuantità: 13 disponibili
Aggiungi al carrelloPaperback. Condizione: New. A central concern of number theory is the study of local-to-global principles, which describe the behavior of a global field K in terms of the behavior of various completions of K. This book looks at a specific example of a local-to-global principle: Weil's conjecture on the Tamagawa number of a semisimple algebraic group G over K. In the case where K is the function field of an algebraic curve X, this conjecture counts the number of G-bundles on X (global information) in terms of the reduction of G at the points of X (local information). The goal of this book is to give a conceptual proof of Weil's conjecture, based on the geometry of the moduli stack of G-bundles. Inspired by ideas from algebraic topology, it introduces a theory of factorization homology in the setting ?-adic sheaves. Using this theory, Dennis Gaitsgory and Jacob Lurie articulate a different local-to-global principle: a product formula that expresses the cohomology of the moduli stack of G-bundles (a global object) as a tensor product of local factors.Using a version of the Grothendieck-Lefschetz trace formula, Gaitsgory and Lurie show that this product formula implies Weil's conjecture. The proof of the product formula will appear in a sequel volume.
Editore: Princeton University Press, 2019
ISBN 10: 0691182132 ISBN 13: 9780691182131
Lingua: Inglese
Da: GreatBookPrices, Columbia, MD, U.S.A.
EUR 147,46
Convertire valutaQuantità: 2 disponibili
Aggiungi al carrelloCondizione: New.
Editore: Princeton University Press Feb 2019, 2019
ISBN 10: 0691182140 ISBN 13: 9780691182148
Lingua: Inglese
Da: AHA-BUCH GmbH, Einbeck, Germania
EUR 93,75
Convertire valutaQuantità: 2 disponibili
Aggiungi al carrelloTaschenbuch. Condizione: Neu. Neuware - A central concern of number theory is the study of local-to-global principles, which describe the behavior of a global field K in terms of the behavior of various completions of K. This book looks at a specific example of a local-to-global principle: Weil's conjecture on the Tamagawa number of a semisimple algebraic group G over K. In the case where K is the function field of an algebraic curve X, this conjecture counts the number of G-bundles on X (global information) in terms of the reduction of G at the points of X (local information). The goal of this book is to give a conceptual proof of Weil's conjecture, based on the geometry of the moduli stack of G-bundles. Inspired by ideas from algebraic topology, it introduces a theory of factorization homology in the setting ¿-adic sheaves. Using this theory, Dennis Gaitsgory and Jacob Lurie articulate a different local-to-global principle: a product formula that expresses the cohomology of the moduli stack of G-bundles (a global object) as a tensor product of local factors.Using a version of the Grothendieck-Lefschetz trace formula, Gaitsgory and Lurie show that this product formula implies Weil's conjecture. The proof of the product formula will appear in a sequel volume.
Editore: Princeton University Press, 2019
ISBN 10: 0691182132 ISBN 13: 9780691182131
Lingua: Inglese
Da: GreatBookPricesUK, Woodford Green, Regno Unito
EUR 146,01
Convertire valutaQuantità: 1 disponibili
Aggiungi al carrelloCondizione: New.
Editore: Princeton University Press, US, 2019
ISBN 10: 0691182140 ISBN 13: 9780691182148
Lingua: Inglese
Da: Rarewaves.com UK, London, Regno Unito
EUR 90,61
Convertire valutaQuantità: 4 disponibili
Aggiungi al carrelloPaperback. Condizione: New. A central concern of number theory is the study of local-to-global principles, which describe the behavior of a global field K in terms of the behavior of various completions of K. This book looks at a specific example of a local-to-global principle: Weil's conjecture on the Tamagawa number of a semisimple algebraic group G over K. In the case where K is the function field of an algebraic curve X, this conjecture counts the number of G-bundles on X (global information) in terms of the reduction of G at the points of X (local information). The goal of this book is to give a conceptual proof of Weil's conjecture, based on the geometry of the moduli stack of G-bundles. Inspired by ideas from algebraic topology, it introduces a theory of factorization homology in the setting ?-adic sheaves. Using this theory, Dennis Gaitsgory and Jacob Lurie articulate a different local-to-global principle: a product formula that expresses the cohomology of the moduli stack of G-bundles (a global object) as a tensor product of local factors.Using a version of the Grothendieck-Lefschetz trace formula, Gaitsgory and Lurie show that this product formula implies Weil's conjecture. The proof of the product formula will appear in a sequel volume.
Editore: Princeton University Press, 2019
ISBN 10: 0691182132 ISBN 13: 9780691182131
Lingua: Inglese
Da: GreatBookPrices, Columbia, MD, U.S.A.
EUR 172,40
Convertire valutaQuantità: 2 disponibili
Aggiungi al carrelloCondizione: As New. Unread book in perfect condition.
Editore: Princeton University Press, 2019
ISBN 10: 0691182132 ISBN 13: 9780691182131
Lingua: Inglese
Da: GreatBookPricesUK, Woodford Green, Regno Unito
EUR 172,58
Convertire valutaQuantità: 1 disponibili
Aggiungi al carrelloCondizione: As New. Unread book in perfect condition.
Editore: Princeton University Press, 2019
ISBN 10: 0691182132 ISBN 13: 9780691182131
Lingua: Inglese
Da: Ria Christie Collections, Uxbridge, Regno Unito
EUR 182,54
Convertire valutaQuantità: 1 disponibili
Aggiungi al carrelloCondizione: New. In.
Editore: Princeton University Press, US, 2019
ISBN 10: 0691182132 ISBN 13: 9780691182131
Lingua: Inglese
Da: Rarewaves USA, OSWEGO, IL, U.S.A.
EUR 218,29
Convertire valutaQuantità: 2 disponibili
Aggiungi al carrelloHardback. Condizione: New. A central concern of number theory is the study of local-to-global principles, which describe the behavior of a global field K in terms of the behavior of various completions of K. This book looks at a specific example of a local-to-global principle: Weil's conjecture on the Tamagawa number of a semisimple algebraic group G over K. In the case where K is the function field of an algebraic curve X, this conjecture counts the number of G-bundles on X (global information) in terms of the reduction of G at the points of X (local information). The goal of this book is to give a conceptual proof of Weil's conjecture, based on the geometry of the moduli stack of G-bundles. Inspired by ideas from algebraic topology, it introduces a theory of factorization homology in the setting ?-adic sheaves. Using this theory, Dennis Gaitsgory and Jacob Lurie articulate a different local-to-global principle: a product formula that expresses the cohomology of the moduli stack of G-bundles (a global object) as a tensor product of local factors.Using a version of the Grothendieck-Lefschetz trace formula, Gaitsgory and Lurie show that this product formula implies Weil's conjecture. The proof of the product formula will appear in a sequel volume.
Editore: Princeton University Press Feb 2019, 2019
ISBN 10: 0691182132 ISBN 13: 9780691182131
Lingua: Inglese
Da: AHA-BUCH GmbH, Einbeck, Germania
EUR 189,40
Convertire valutaQuantità: 1 disponibili
Aggiungi al carrelloBuch. Condizione: Neu. Neuware - A central concern of number theory is the study of local-to-global principles, which describe the behavior of a global field K in terms of the behavior of various completions of K. This book looks at a specific example of a local-to-global principle: Weil's conjecture on the Tamagawa number of a semisimple algebraic group G over K. In the case where K is the function field of an algebraic curve X, this conjecture counts the number of G-bundles on X (global information) in terms of the reduction of G at the points of X (local information). The goal of this book is to give a conceptual proof of Weil's conjecture, based on the geometry of the moduli stack of G-bundles. Inspired by ideas from algebraic topology, it introduces a theory of factorization homology in the setting ¿-adic sheaves. Using this theory, Dennis Gaitsgory and Jacob Lurie articulate a different local-to-global principle: a product formula that expresses the cohomology of the moduli stack of G-bundles (a global object) as a tensor product of local factors.Using a version of the Grothendieck-Lefschetz trace formula, Gaitsgory and Lurie show that this product formula implies Weil's conjecture. The proof of the product formula will appear in a sequel volume.
Editore: Princeton University Press, US, 2019
ISBN 10: 0691182132 ISBN 13: 9780691182131
Lingua: Inglese
Da: Rarewaves USA United, OSWEGO, IL, U.S.A.
EUR 221,42
Convertire valutaQuantità: 2 disponibili
Aggiungi al carrelloHardback. Condizione: New. A central concern of number theory is the study of local-to-global principles, which describe the behavior of a global field K in terms of the behavior of various completions of K. This book looks at a specific example of a local-to-global principle: Weil's conjecture on the Tamagawa number of a semisimple algebraic group G over K. In the case where K is the function field of an algebraic curve X, this conjecture counts the number of G-bundles on X (global information) in terms of the reduction of G at the points of X (local information). The goal of this book is to give a conceptual proof of Weil's conjecture, based on the geometry of the moduli stack of G-bundles. Inspired by ideas from algebraic topology, it introduces a theory of factorization homology in the setting ?-adic sheaves. Using this theory, Dennis Gaitsgory and Jacob Lurie articulate a different local-to-global principle: a product formula that expresses the cohomology of the moduli stack of G-bundles (a global object) as a tensor product of local factors.Using a version of the Grothendieck-Lefschetz trace formula, Gaitsgory and Lurie show that this product formula implies Weil's conjecture. The proof of the product formula will appear in a sequel volume.