Multivariate polysplines are a new mathematical technique that has arisen from a synthesis of approximation theory and the theory of partial differential equations. It is an invaluable means to interpolate practical data with smooth functions.
Multivariate polysplines have applications in the design of surfaces and "smoothing" that are essential in computer aided geometric design (CAGD and CAD/CAM systems), geophysics, magnetism, geodesy, geography, wavelet analysis and signal and image processing. In many cases involving practical data in these areas, polysplines are proving more effective than well-established methods, such as kKriging, radial basis functions, thin plate splines and minimum curvature.
Part 1 assumes no special knowledge of partial differential equations and is intended as a graduate level introduction to the topic
Part 2 develops the theory of cardinal Polysplines, which is a natural generalization of Schoenberg's beautiful one-dimensional theory of cardinal splines.
Part 3 constructs a wavelet analysis using cardinal Polysplines. The results parallel those found by Chui for the one-dimensional case.
Part 4 considers the ultimate generalization of Polysplines - on manifolds, for a wide class of higher-order elliptic operators and satisfying a Holladay variational property.
Le informazioni nella sezione "Riassunto" possono far riferimento a edizioni diverse di questo titolo.
Ognyan Kounchev received his M.S. in partial differential equations from Sofia University, Bulgaria and his Ph.D. in optimal control of partial differential equations and numerical methods from the University of Belarus, Minsk. He was awarded a grant from the Volkswagen Foundation (1996-1999) for studying the applications of partial differential equations in approximation and spline theory. Currently, Dr Kounchev is a Fulbright Scholar at the University of Wisconsin-Madison where he works in the Wavelet Ideal Data Representation Center in the Department of Computer Sciences.
Multivariate Polysplines presents a completely original approach to multivariate spline analysis. Polysplines are piecewise polyharmonic splines and provide a powerful means of interpolating data. Examples in the text indicate that in many practical cases of data smoothing Polysplines are more effective than well-established techniques, such as Kriging, Radial Basis Functions and Minimum Curvature. They also provide new perspectives on wavelet theory with applications to signal and image processing.
Key Features
· Part 1 assumes no special knowledge of partial differential equations and is intended as a graduate level introduction to the topic
· Part 2 develops the theory of cardinal Polysplines, which is a natural generalization of Schoenberg's beautiful one-dimensional theory of cardinal splines.
· Part 3 constructs a wavelet analysis using cardinal Polysplines. The results parallel those found by Chui for the one-dimensional case.
· Part 4 considers the ultimate generalization of Polysplines - on manifolds, for a wide class of higher-order elliptic operators and satisfying a Holladay variational property.
Multivariate Polysplines is aimed principally at specialists in approximation and spline theory, wavelet analysis and signal and image processing. It will also prove a valuable text for people using computer aided geometric design (CAGD and CAD/CAM) systems or smoothing and spline methods in geophysics, geodesy, geology, magnetism etc. as it offers a flexible alternative to traditional tools such as Kriging, Radial Basis Functions and Minimum Curvature.
The book is also suitable as a text for graduate courses on these topics.
Ognyan Kounchev received his M.S. in partial differential equations from Sofia University, Bulgaria and his Ph.D. in optimal control of partial differential equations and numerical methods from the University of Belarus, Minsk. He was awarded a grant from the Volkswagen Foundation (1996-1999) for studying the applications of partial differential equations in approximation and spline theory. Currently, Dr Kounchev is a Fulbright Scholar at the University of Wisconsin-Madison where he works in the Wavelet Ideal Data Representation Center in the Department of Computer Sciences.|Multivariate Polysplines presents a completely original approach to multivariate spline analysis. Polysplines are piecewise polyharmonic splines and provide a powerful means of interpolating data. Examples in the text indicate that in many practical cases of data smoothing Polysplines are more effective than well-established techniques, such as Kriging, Radial Basis Functions and Minimum Curvature. They also provide new perspectives on wavelet theory with applications to signal and image processing.
Key Features
· Part 1 assumes no special knowledge of partial differential equations and is intended as a graduate level introduction to the topic
· Part 2 develops the theory of cardinal Polysplines, which is a natural generalization of Schoenberg's beautiful one-dimensional theory of cardinal splines.
· Part 3 constructs a wavelet analysis using cardinal Polysplines. The results parallel those found by Chui for the one-dimensional case.
· Part 4 considers the ultimate generalization of Polysplines - on manifolds, for a wide class of higher-order elliptic operators and satisfying a Holladay variational property.
Multivariate Polysplines is aimed principally at specialists in approximation and spline theory, wavelet analysis and signal and image processing. It will also prove a valuable text for people using computer aided geometric design (CAGD and CAD/CAM) systems or smoothing and spline methods in geophysics, geodesy, geology, magnetism etc. as it offers a flexible alternative to traditional tools such as Kriging, Radial Basis Functions and Minimum Curvature.
The book is also suitable as a text for graduate courses on these topics.
Ognyan Kounchev received his M.S. in partial differential equations from Sofia University, Bulgaria and his Ph.D. in optimal control of partial differential equations and numerical methods from the University of Belarus, Minsk. He was awarded a grant from the Volkswagen Foundation (1996-1999) for studying the applications of partial differential equations in approximation and spline theory. Currently, Dr Kounchev is a Fulbright Scholar at the University of Wisconsin-Madison where he works in the Wavelet Ideal Data Representation Center in the Department of Computer Sciences.
Le informazioni nella sezione "Su questo libro" possono far riferimento a edizioni diverse di questo titolo.
EUR 13,85 per la spedizione da Francia a Italia
Destinazione, tempi e costiGRATIS per la spedizione da U.S.A. a Italia
Destinazione, tempi e costiDa: Theologia Books, La Charite sur Loire, Francia
Hardcover. Condizione: As New. As new hardback copy. Pictorial boards. xiv, 498 pages. Codice articolo 006209
Quantità: 1 disponibili
Da: Der Buchfreund, Wien, Austria
Original-Pappband. Condizione: gut erhalten. gr8 Original-Pappband en Mathematik, Naturwissenschaften XIV pp., 498 pp. Codice articolo 3114
Quantità: 1 disponibili
Da: Bulk Book Warehouse, Rotterdam, NY, U.S.A.
Condizione: Good. Shows minimal wear such as frayed or folded edges, minor rips and tears, and/or slightly worn binding. May have stickers and/or contain inscription on title page. No observed missing pages. Codice articolo 581QRT000OPW_ns
Quantità: 1 disponibili
Da: Romtrade Corp., STERLING HEIGHTS, MI, U.S.A.
Condizione: New. This is a Brand-new US Edition. This Item may be shipped from US or any other country as we have multiple locations worldwide. Codice articolo ABNR-129037
Quantità: 1 disponibili
Da: Basi6 International, Irving, TX, U.S.A.
Condizione: Brand New. New. US edition. Expediting shipping for all USA and Europe orders excluding PO Box. Excellent Customer Service. Codice articolo ABEJUNE24-57646
Quantità: 1 disponibili
Da: McCord Books, NORWALK, IA, U.S.A.
hardcover. Condizione: Good. Ex-library copy with usual markings, otherwise very good condition. Codice articolo 231028020
Quantità: 1 disponibili
Da: Books Puddle, New York, NY, U.S.A.
Condizione: New. pp. 516. Codice articolo 26588416
Quantità: 1 disponibili
Da: Majestic Books, Hounslow, Regno Unito
Condizione: New. pp. 516 Illus. Codice articolo 8340831
Quantità: 1 disponibili
Da: Biblios, Frankfurt am main, HESSE, Germania
Condizione: New. pp. 516. Codice articolo 18588426
Quantità: 1 disponibili