Phishing is one of the most widely-perpetrated forms of cyber attack, used to gather sensitive information such as credit card numbers, bank account numbers, and user logins and passwords, as well as other information entered via a web site. The authors of A Machine-Learning Approach to Phishing Detetion and Defense have conducted research to demonstrate how a machine learning algorithm can be used as an effective and efficient tool in detecting phishing websites and designating them as information security threats. This methodology can prove useful to a wide variety of businesses and organizations who are seeking solutions to this long-standing threat. A Machine-Learning Approach to Phishing Detetion and Defense also provides information security researchers with a starting point for leveraging the machine algorithm approach as a solution to other information security threats.
Le informazioni nella sezione "Riassunto" possono far riferimento a edizioni diverse di questo titolo.
O.A. Akanbi received his B. Sc. (Hons, Information Technology – Software Engineering) from Kuala Lumpur Metropolitan University, Malaysia, M. Sc. in Information Security from University Teknologi Malaysia (UTM), and he is presently a graduate student in Computer Science at Texas Tech University His area of research is in CyberSecurity.
Dr. Iraj Sadegh Amiri received his B. Sc (Applied Physics) from Public University of Urmia, Iran in 2001 and a gold medalist M. Sc. in optics from University Technology Malaysia (UTM), in 2009. He was awarded a PhD degree in photonics in Jan 2014. He has published well over 350 academic publications since the 2012s in optical soliton communications, laser physics, photonics, optics and nanotechnology engineering. Currently he is a senior lecturer in University of Malaysia (UM), Kuala Lumpur, Malaysia.
E. Fazeldehkordi received her Associate’s Degree in Computer Hardware from the University of Science and Technology, Tehran, Iran, B. Sc (Electrical Engineering-Electronics) from Azad University of Tafresh, Iran, and M. Sc. in Information Security from Universiti Teknologi Malaysia (UTM). She currently conducts research in information security and has recently published her research on Mobile Ad Hoc Network Security using CreateSpace.
Le informazioni nella sezione "Su questo libro" possono far riferimento a edizioni diverse di questo titolo.
EUR 17,49 per la spedizione da U.S.A. a Italia
Destinazione, tempi e costiEUR 11,00 per la spedizione da Germania a Italia
Destinazione, tempi e costiDa: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germania
Taschenbuch. Condizione: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Phishing is one of the most widely-perpetrated forms of cyber attack, used to gather sensitive information such as credit card numbers, bank account numbers, and user logins and passwords, as well as other information entered via a web site. The authors of A Machine-Learning Approach to Phishing Detetion and Defense have conducted research to demonstrate how a machine learning algorithm can be used as an effective and efficient tool in detecting phishing websites and designating them as information security threats. This methodology can prove useful to a wide variety of businesses and organizations who are seeking solutions to this long-standing threat. A Machine-Learning Approach to Phishing Detetion and Defense also provides information security researchers with a starting point for leveraging the machine algorithm approach as a solution to other information security threats. Englisch. Codice articolo 9780128029275
Quantità: 2 disponibili
Da: moluna, Greven, Germania
Condizione: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Phishing is one of the most widely-perpetrated forms of cyber attack, used to gather sensitive information such as credit card numbers, bank account numbers, and user logins and passwords, as well as other information entered via a web site. The authors of . Codice articolo 21737744
Quantità: Più di 20 disponibili
Da: Revaluation Books, Exeter, Regno Unito
Paperback. Condizione: Brand New. 100 pages. 8.75x6.00x0.50 inches. In Stock. This item is printed on demand. Codice articolo __0128029277
Quantità: 2 disponibili
Da: THE SAINT BOOKSTORE, Southport, Regno Unito
Paperback / softback. Condizione: New. New copy - Usually dispatched within 4 working days. 212. Codice articolo B9780128029275
Quantità: Più di 20 disponibili
Da: Brook Bookstore On Demand, Napoli, NA, Italia
Condizione: new. Questo è un articolo print on demand. Codice articolo 24938dbbe14d931a19fa30fff7ab8454
Quantità: Più di 20 disponibili
Da: Majestic Books, Hounslow, Regno Unito
Condizione: New. pp. 100. Codice articolo 356259644
Quantità: 3 disponibili
Da: Chiron Media, Wallingford, Regno Unito
Paperback. Condizione: New. Codice articolo 6666-ELS-9780128029275
Quantità: Più di 20 disponibili
Da: Books Puddle, New York, NY, U.S.A.
Condizione: New. pp. 100. Codice articolo 26357279971
Quantità: 3 disponibili
Da: AHA-BUCH GmbH, Einbeck, Germania
Taschenbuch. Condizione: Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - Phishing is one of the most widely-perpetrated forms of cyber attack, used to gather sensitive information such as credit card numbers, bank account numbers, and user logins and passwords, as well as other information entered via a web site. The authors of A Machine-Learning Approach to Phishing Detetion and Defense have conducted research to demonstrate how a machine learning algorithm can be used as an effective and efficient tool in detecting phishing websites and designating them as information security threats. This methodology can prove useful to a wide variety of businesses and organizations who are seeking solutions to this long-standing threat. A Machine-Learning Approach to Phishing Detetion and Defense also provides information security researchers with a starting point for leveraging the machine algorithm approach as a solution to other information security threats. Codice articolo 9780128029275
Quantità: 2 disponibili
Da: Biblios, Frankfurt am main, HESSE, Germania
Condizione: New. pp. 100. Codice articolo 18357279977
Quantità: 3 disponibili