The most comprehensive overview of signal detection available.
This is a thorough, up-to-date introduction to optimizing detection algorithms for implementation on digital computers. It focuses extensively on real-world signal processing applications, including state-of-the-art speech and communications technology as well as traditional sonar/radar systems.
Start with a quick review of the fundamental issues associated with mathematical detection, as well as the most important probability density functions and their properties. Next, review Gaussian, Chi-Squared, F, Rayleigh, and Rician PDFs, quadratic forms of Gaussian random variables, asymptotic Gaussian PDFs, and Monte Carlo Performance Evaluations.
Three chapters introduce the basics of detection based on simple hypothesis testing, including the Neyman-Pearson Theorem, handling irrelevant data, Bayes Risk, multiple hypothesis testing, and both deterministic and random signals.
The author then presents exceptionally detailed coverage of composite hypothesis testing to accommodate unknown signal and noise parameters. These chapters will be especially useful for those building detectors that must work with real, physical data. Other topics covered include:
The book makes extensive use of MATLAB, and program listings are included wherever appropriate. Designed for practicing electrical engineers, researchers, and advanced students, it is an ideal complement to Steven M. Kay's Fundamentals of Statistical Signal Processing, Vol. 1: Estimation Theory (ISBN: 0-13-345711-7).
Le informazioni nella sezione "Riassunto" possono far riferimento a edizioni diverse di questo titolo.
STEVEN M. KAY is Professor of Electrical Engineering at the University of Rhode Island and a leading expert in signal processing.
The most comprehensive overview of signal detection available.
This is a thorough, up-to-date introduction to optimizing detection algorithms for implementation on digital computers. It focuses extensively on real-world signal processing applications, including state-of-the-art speech and communications technology as well as traditional sonar/radar systems.
Start with a quick review of the fundamental issues associated with mathematical detection, as well as the most important probability density functions and their properties. Next, review Gaussian, Chi-Squared, F, Rayleigh, and Rician PDFs, quadratic forms of Gaussian random variables, asymptotic Gaussian PDFs, and Monte Carlo Performance Evaluations.
Three chapters introduce the basics of detection based on simple hypothesis testing, including the Neyman-Pearson Theorem, handling irrelevant data, Bayes Risk, multiple hypothesis testing, and both deterministic and random signals.
The author then presents exceptionally detailed coverage of composite hypothesis testing to accommodate unknown signal and noise parameters. These chapters will be especially useful for those building detectors that must work with real, physical data. Other topics covered include:
The book makes extensive use of MATLAB, and program listings are included wherever appropriate. Designed for practicing electrical engineers, researchers, and advanced students, it is an ideal complement to Steven M. Kay's Fundamentals of Statistical Signal Processing, Vol. 1: Estimation Theory (Prentice Hall PTR, 1993, ISBN: 0-13-345711-7).
Le informazioni nella sezione "Su questo libro" possono far riferimento a edizioni diverse di questo titolo.
Da: Goodwill Industries of VSB, Oxnard, CA, U.S.A.
Condizione: Good. The book is nice and 100% readable, but the book has visible wear which may include stains, scuffs, scratches, folded edges, sticker glue, highlighting, notes, and worn corners. Codice articolo 4JQZV1000MQI
Quantità: 1 disponibili
Da: GreatBookPrices, Columbia, MD, U.S.A.
Condizione: New. Codice articolo 53802-n
Quantità: 11 disponibili
Da: Romtrade Corp., STERLING HEIGHTS, MI, U.S.A.
Condizione: New. This is a Brand-new US Edition. This Item may be shipped from US or any other country as we have multiple locations worldwide. Codice articolo ABNR-26060
Quantità: 2 disponibili
Da: Basi6 International, Irving, TX, U.S.A.
Condizione: Brand New. New. US edition. Expediting shipping for all USA and Europe orders excluding PO Box. Excellent Customer Service. Codice articolo ABEOCT25-625
Quantità: 2 disponibili
Da: Basi6 International, Irving, TX, U.S.A.
Condizione: Brand New. New. US edition. Expediting shipping for all USA and Europe orders excluding PO Box. Excellent Customer Service. Codice articolo ABEOCT25-272980
Quantità: 5 disponibili
Da: SMASS Sellers, IRVING, TX, U.S.A.
Condizione: New. Brand New Original US Edition. Customer service! Satisfaction Guaranteed. Codice articolo ASNT3-26060
Quantità: 2 disponibili
Da: GreatBookPricesUK, Woodford Green, Regno Unito
Condizione: New. Codice articolo 53802-n
Quantità: 11 disponibili
Da: Grand Eagle Retail, Bensenville, IL, U.S.A.
Hardcover. Condizione: new. Hardcover. 50413-4 The most comprehensive overview of signal detection available. This is a thorough, up-to-date introduction to optimizing detection algorithms for implementation on digital computers. It focuses extensively on real-world signal processing applications, including state-of-the-art speech and communications technology as well as traditional sonar/radar systems. Start with a quick review of the fundamental issues associated with mathematical detection, as well as the most important probability density functions and their properties. Next, review Gaussian, Chi-Squared, F, Rayleigh, and Rician PDFs, quadratic forms of Gaussian random variables, asymptotic Gaussian PDFs, and Monte Carlo Performance Evaluations. Three chapters introduce the basics of detection based on simple hypothesis testing, including the Neyman-Pearson Theorem, handling irrelevant data, Bayes Risk, multiple hypothesis testing, and both deterministic and random signals. The author then presents exceptionally detailed coverage of composite hypothesis testing to accommodate unknown signal and noise parameters.These chapters will be especially useful for those building detectors that must work with real, physical data. Other topics covered include: * Detection in nonGaussian noise, including nonGaussian noise characteristics, known deterministic signals, and deterministic signals with unknown parameters * Detection of model changes, including maneuver detection and time-varying PSD detection * Complex extensions, vector generalization, and array processing The book makes extensive use of MATLAB, and program listings are included wherever appropriate. Designed for practicing electrical engineers, researchers, and advanced students, it is an ideal complement to Steven M. Kay's Fundamentals of Statistical Signal Processing, Vol. 1: Estimation Theory (Prentice Hall PTR, 1993, ISBN: 0-13-345711-7). PLEASE PROVIDE ??? Shipping may be from multiple locations in the US or from the UK, depending on stock availability. Codice articolo 9780135041352
Quantità: 1 disponibili
Da: Majestic Books, Hounslow, Regno Unito
Condizione: New. pp. 672. Codice articolo 8239817
Quantità: 2 disponibili
Da: Biblios, Frankfurt am main, HESSE, Germania
Condizione: New. pp. 672. Codice articolo 18656668
Quantità: 4 disponibili