"The authors’ clear visual style provides a comprehensive look at what’s currently possible with artificial neural networks as well as a glimpse of the magic that’s to come."
—Tim Urban, author of Wait But Why
Fully Practical, Insightful Guide to Modern Deep Learning
Deep learning is transforming software, facilitating powerful new artificial intelligence capabilities, and driving unprecedented algorithm performance. Deep Learning Illustrated is uniquely intuitive and offers a complete introduction to the discipline’s techniques. Packed with full-color figures and easy-to-follow code, it sweeps away the complexity of building deep learning models, making the subject approachable and fun to learn.
World-class instructor and practitioner Jon Krohn—with visionary content from Grant Beyleveld and beautiful illustrations by Aglaé Bassens—presents straightforward analogies to explain what deep learning is, why it has become so popular, and how it relates to other machine learning approaches. Krohn has created a practical reference and tutorial for developers, data scientists, researchers, analysts, and students who want to start applying it. He illuminates theory with hands-on Python code in accompanying Jupyter notebooks. To help you progress quickly, he focuses on the versatile deep learning library Keras to nimbly construct efficient TensorFlow models; PyTorch, the leading alternative library, is also covered.
You’ll gain a pragmatic understanding of all major deep learning approaches and their uses in applications ranging from machine vision and natural language processing to image generation and game-playing algorithms.
Le informazioni nella sezione "Riassunto" possono far riferimento a edizioni diverse di questo titolo.
Jon Krohn is the chief data scientist at untapt, a machine learning startup in New York. He leads a flourishing Deep Learning Study Group, presents the acclaimed Deep Learning with TensorFlow LiveLessons in Safari, and teaches his Deep Learning curriculum at the NYC Data Science Academy. Jon holds a doctorate in neuroscience from Oxford University and has been publishing on machine learning in leading academic journals since 2010. Grant Beyleveld is a doctoral candidate at the Icahn School of Medicine at New York’s Mount Sinai hospital, researching the relationship between viruses and their hosts. A founding member of the Deep Learning Study Group, he holds a masters in molecular medicine and medical biochemistry from the University of Witwatersrand. Aglaé Bassens is a Belgian artist based in Brooklyn. She studied fine arts at The Ruskin School of Drawing and Fine Art, Oxford University, and University College London’s Slade School of Fine Arts. Along with her work as an illustrator, her practice includes still life painting and murals.
Deep learning is one of today’s hottest fields. This approach to machine learning is achieving breakthrough results in some of today’s highest profile applications, in organizations ranging from Google to Tesla, Facebook to Apple. Thousands of technical professionals and students want to start leveraging its power, but previous books on deep learning have often been non-intuitive, inaccessible, and dry. In Deep Learning Illustrated, three world-class instructors and practitioners present a uniquely visual, intuitive, and accessible high-level introduction to the techniques and applications of deep learning. Packed with vibrant, full-color illustrations, it abstracts away much of the complexity of building deep learning models, making the field more fun to learn and accessible to a far wider audience.
Part I’s high-level overview explains what Deep Learning is, why it has become so ubiquitous, and how it relates to concepts and terminology such as Artificial Intelligence, Machine Learning, Artificial Neural Networks, and Reinforcement Learning. These opening chapters are replete with vivid illustrations, easy-to-grasp analogies, and character-focused narratives.
Building on this foundation, the authors then offer a practical reference and tutorial for applying a wide spectrum of proven deep learning techniques. Essential theory is covered with as little mathematics as possible and is illuminated with hands-on Python code. Theory is supported with practical "run-throughs" available in accompanying Jupyter notebooks, delivering a pragmatic understanding of all major deep learning approaches and their applications: machine vision, natural language processing, image generation, and videogaming.
To help readers accomplish more in less time, the authors feature several of today’s most widely used and innovative deep learning libraries, including TensorFlow and its high-level API, Keras; PyTorch; and the recently released, high-level Coach, a TensorFlow API that abstracts away the complexity typically associated with building Deep Reinforcement Learning algorithms.
The first full-color, illustrated, hands-on guide to the fundamentals of modern, deep-learning AI: simply the most intuitive, practical way to get started
Le informazioni nella sezione "Su questo libro" possono far riferimento a edizioni diverse di questo titolo.
Da: HPB-Red, Dallas, TX, U.S.A.
Paperback. Condizione: Good. Connecting readers with great books since 1972! Used textbooks may not include companion materials such as access codes, etc. May have some wear or writing/highlighting. We ship orders daily and Customer Service is our top priority! Codice articolo S_433640209
Quantità: 1 disponibili
Da: Greenway, Chattanooga, TN, U.S.A.
paperback. Condizione: Very good condition. very clean,fast ship. Codice articolo 215800
Quantità: 1 disponibili
Da: Boscana Books, Guasti, CA, U.S.A.
Soft cover. Condizione: Very Good. Very Good. Clean and solid. Codice articolo 000363
Quantità: 1 disponibili
Da: WeBuyBooks, Rossendale, LANCS, Regno Unito
Condizione: Like New. Most items will be dispatched the same or the next working day. An apparently unread copy in perfect condition. Dust cover is intact with no nicks or tears. Spine has no signs of creasing. Pages are clean and not marred by notes or folds of any kind. Codice articolo wbs4136567659
Quantità: 1 disponibili
Da: GreatBookPrices, Columbia, MD, U.S.A.
Condizione: New. Codice articolo 32772422-n
Quantità: 2 disponibili
Da: Grand Eagle Retail, Bensenville, IL, U.S.A.
Paperback. Condizione: new. Paperback. Deep learning is one of today's hottest fields. This approach to machine learning is achieving breakthrough results in some of today's highest profile applications, in organisations ranging from Google to Tesla, Facebook to Apple. Thousands of technical professionals and students want to start leveraging its power, but previous books on deep learning have often been non-intuitive, inaccessible, and dry. In Deep Learning Illustrated, three world-class instructors and practitioners present a uniquely visual, intuitive, and accessible high-level introduction to the techniques and applications of deep learning. Packed with vibrant, full-colour illustrations, it abstracts away much of the complexity of building deep learning models, making the field more fun to learn, and accessible to a far wider audience. Samples Preview sample pages from Deep Learning Illustrated: A Visual, Interactive Guide to Artificial Intelligence > Part I's high-level overview explains what Deep Learning is, why it has become so ubiquitous, and how it relates to concepts and terminology such as Artificial Intelligence, Machine Learning, Artificial Neural Networks, and Reinforcement Learning. These opening chapters are replete with vivid illustrations, easy-to-grasp analogies, and character-focused narratives. Building on this foundation, the authors then offer a practical reference and tutorial for applying a wide spectrum of proven deep learning techniques. Essential theory is covered with as little mathematics as possible, and illuminated with hands-on Python code. Theory is supported with practical 'run-throughs' available in accompanying Jupyter notebooks, delivering a pragmatic understanding of all major deep learning approaches and their applications: machine vision, natural language processing, image generation, and videogaming. Shipping may be from multiple locations in the US or from the UK, depending on stock availability. Codice articolo 9780135116692
Quantità: 1 disponibili
Da: PBShop.store US, Wood Dale, IL, U.S.A.
PAP. Condizione: New. New Book. Shipped from UK. Established seller since 2000. Codice articolo C8-9780135116692
Quantità: 2 disponibili
Da: GreatBookPrices, Columbia, MD, U.S.A.
Condizione: As New. Unread book in perfect condition. Codice articolo 32772422
Quantità: 2 disponibili
Da: PBShop.store UK, Fairford, GLOS, Regno Unito
PAP. Condizione: New. New Book. Shipped from UK. Established seller since 2000. Codice articolo C8-9780135116692
Quantità: 2 disponibili
Da: Rarewaves.com USA, London, LONDO, Regno Unito
Paperback. Condizione: New. "The authors' clear visual style provides a comprehensive look at what's currently possible with artificial neural networks as well as a glimpse of the magic that's to come."-Tim Urban, author of Wait But Why Fully Practical, Insightful Guide to Modern Deep LearningDeep learning is transforming software, facilitating powerful new artificial intelligence capabilities, and driving unprecedented algorithm performance. Deep Learning Illustrated is uniquely intuitive and offers a complete introduction to the discipline's techniques. Packed with full-color figures and easy-to-follow code, it sweeps away the complexity of building deep learning models, making the subject approachable and fun to learn.World-class instructor and practitioner Jon Krohn-with visionary content from Grant Beyleveld and beautiful illustrations by Aglaé Bassens-presents straightforward analogies to explain what deep learning is, why it has become so popular, and how it relates to other machine learning approaches. Krohn has created a practical reference and tutorial for developers, data scientists, researchers, analysts, and students who want to start applying it. He illuminates theory with hands-on Python code in accompanying Jupyter notebooks. To help you progress quickly, he focuses on the versatile deep learning library Keras to nimbly construct efficient TensorFlow models; PyTorch, the leading alternative library, is also covered.You'll gain a pragmatic understanding of all major deep learning approaches and their uses in applications ranging from machine vision and natural language processing to image generation and game-playing algorithms. Discover what makes deep learning systems unique, and the implications for practitionersExplore new tools that make deep learning models easier to build, use, and improveMaster essential theory: artificial neurons, training, optimization, convolutional nets, recurrent nets, generative adversarial networks (GANs), deep reinforcement learning, and moreWalk through building interactive deep learning applications, and move forward with your own artificial intelligence projects Register your book for convenient access to downloads, updates, and/or corrections as they become available. See inside book for details. Codice articolo LU-9780135116692
Quantità: 3 disponibili