Articoli correlati a Pattern Recognition Using Neural Networks: Theory and...

Pattern Recognition Using Neural Networks: Theory and Algorithms for Engineers and Scientists - Rilegato

 
9780195079203: Pattern Recognition Using Neural Networks: Theory and Algorithms for Engineers and Scientists

Sinossi

Pattern Recognition Using Neural Networks covers traditional linear pattern recognition and its nonlinear extension via neural networks. The approach is algorithmic for easy implementation on a computer, which makes this a refreshing what-why-and-how text that contrasts with the theoretical approach and pie-in-the-sky hyperbole of many books on neural networks. It covers the standard decision-theoretic pattern recognition of clustering via minimum distance, graphical and structural methods, and Bayesian discrimination.
Pattern recognizers evolve across the sections into perceptrons, a layer of perceptrons, multiple-layered perceptrons, functional link nets, and radial basis function networks. Other networks covered in the process are learning vector quantization networks, self-organizing maps, and recursive neural networks. Backpropagation is derived in complete detail for one and two hidden layers for both unipolar and bipolar sigmoid activation functions. The more efficient fullpropagation, quickpropagation, cascade correlation, and various methods such as strategic search, conjugate gradients, and genetic algorithms are described. Advanced methods are also described, including the full training algorithms for radial basis function networks and random vector functional link nets, as well as competitive learning networks and fuzzy clustering algorithms.
Special topics covered include:
feature engineering
data engineering
neural engineering of network architectures
validation and verification of the trained networks
This textbook is ideally suited for a senior undergraduate or graduate course in pattern recognition or neural networks for students in computer science, electrical engineering, and computer engineering. It is also a useful reference and resource for researchers and professionals.

Le informazioni nella sezione "Riassunto" possono far riferimento a edizioni diverse di questo titolo.

Informazioni sull?autore

Carl Grant Looney is Professor and Director of the Graduate Program in the Computer Science Department at the University of Nevada in Reno.

Le informazioni nella sezione "Su questo libro" possono far riferimento a edizioni diverse di questo titolo.

Compra usato

Condizioni: ottimo
Zustand: Sehr gut | Sprache: Englisch...
Visualizza questo articolo

EUR 9,90 per la spedizione da Germania a Italia

Destinazione, tempi e costi

EUR 31,94 per la spedizione da Australia a Italia

Destinazione, tempi e costi

Risultati della ricerca per Pattern Recognition Using Neural Networks: Theory and...

Foto dell'editore

Carl G. Looney
Editore: OXFORD UNIV PR, 1997
ISBN 10: 0195079205 ISBN 13: 9780195079203
Antico o usato Rilegato

Da: Buchpark, Trebbin, Germania

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: Sehr gut. Zustand: Sehr gut | Sprache: Englisch | Produktart: Bücher. Codice articolo 1204424/202

Contatta il venditore

Compra usato

EUR 34,40
Convertire valuta
Spese di spedizione: EUR 9,90
Da: Germania a: Italia
Destinazione, tempi e costi

Quantità: 1 disponibili

Aggiungi al carrello

Foto dell'editore

Carl G. Looney
Editore: OXFORD UNIV PR, 1997
ISBN 10: 0195079205 ISBN 13: 9780195079203
Antico o usato Rilegato

Da: Buchpark, Trebbin, Germania

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: Gut. Zustand: Gut | Sprache: Englisch | Produktart: Bücher. Codice articolo 1204424/3

Contatta il venditore

Compra usato

EUR 34,40
Convertire valuta
Spese di spedizione: EUR 9,90
Da: Germania a: Italia
Destinazione, tempi e costi

Quantità: 2 disponibili

Aggiungi al carrello

Foto dell'editore

Looney
ISBN 10: 0195079205 ISBN 13: 9780195079203
Nuovo Rilegato

Da: AussieBookSeller, Truganina, VIC, Australia

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Hardcover. Condizione: new. Hardcover. Pattern Recognition Using Neural Networks covers traditional linear pattern recognition and its nonlinear extension via neural networks. The approach is algorithmic for easy implementation on a computer, which makes this a refreshing what-why-and-how text that contrasts with the theoretical approach and pie-in-the-sky hyperbole of many books on neural networks. It covers the standard decision-theoretic pattern recognition of clustering via minimum distance,graphical and structural methods, and Bayesian discrimination. Pattern recognizers evolve across the sections into perceptrons, a layer of perceptrons, multiple-layered perceptrons, functionallink nets, and radial basis function networks. Other networks covered in the process are learning vector quantization networks, self-organizing maps, and recursive neural networks. Backpropagation is derived in complete detail for one and two hidden layers for both unipolar and bipolar sigmoid activation functions. The more efficient fullpropagation, quickpropagation, cascade correlation, and various methods such as strategic search, conjugate gradients, and genetic algorithms are described.Advanced methods are also described, including the full training algorithms for radial basis function networks and random vector functional link nets, as well as competitive learning networks and fuzzyclustering algorithms. Special topics covered include: feature engineering data engineering neural engineering of network architectures validation and verification of the trained networks This textbook is ideally suited for a senior undergraduate or graduate course in pattern recognition or neural networks for students in computer science, electrical engineering, and computer engineering. It is also a useful reference andresource for researchers and professionals. A text covering traditional linear pattern recognition and its nonlinear extension via neural networks. The approach is algorithmic for easy implementation on a computer. It covers the standard decision-theoretic pattern recognition of clustering via minimum distance, graphical and structural methods, and Bayesian discrimination. Shipping may be from our Sydney, NSW warehouse or from our UK or US warehouse, depending on stock availability. Codice articolo 9780195079203

Contatta il venditore

Compra nuovo

EUR 266,47
Convertire valuta
Spese di spedizione: EUR 31,94
Da: Australia a: Italia
Destinazione, tempi e costi

Quantità: 1 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

Looney, Carl G.
Editore: Oxford University Press, 1997
ISBN 10: 0195079205 ISBN 13: 9780195079203
Nuovo Rilegato

Da: GreatBookPrices, Columbia, MD, U.S.A.

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: New. Codice articolo 73690-n

Contatta il venditore

Compra nuovo

EUR 303,00
Convertire valuta
Spese di spedizione: EUR 17,26
Da: U.S.A. a: Italia
Destinazione, tempi e costi

Quantità: Più di 20 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

Looney, Carl G.
Editore: Oxford University Press, 1997
ISBN 10: 0195079205 ISBN 13: 9780195079203
Nuovo Rilegato

Da: GreatBookPricesUK, Woodford Green, Regno Unito

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: New. Codice articolo 73690-n

Contatta il venditore

Compra nuovo

EUR 307,68
Convertire valuta
Spese di spedizione: EUR 17,22
Da: Regno Unito a: Italia
Destinazione, tempi e costi

Quantità: Più di 20 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

Looney, Carl G.
Editore: Oxford University Press, 1997
ISBN 10: 0195079205 ISBN 13: 9780195079203
Nuovo Rilegato

Da: moluna, Greven, Germania

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: New. KlappentextrnrnPattern Recognition Using Neural Networks covers traditional linear pattern recognition and its nonlinear extension via neural networks. The approach is algorithmic for easy implementation on a computer, which makes this a refres. Codice articolo 897460756

Contatta il venditore

Compra nuovo

EUR 323,13
Convertire valuta
Spese di spedizione: EUR 9,70
Da: Germania a: Italia
Destinazione, tempi e costi

Quantità: Più di 20 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

Looney, Carl G.
Editore: Oxford University Press, 1997
ISBN 10: 0195079205 ISBN 13: 9780195079203
Antico o usato Rilegato

Da: GreatBookPrices, Columbia, MD, U.S.A.

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: As New. Unread book in perfect condition. Codice articolo 73690

Contatta il venditore

Compra usato

EUR 336,53
Convertire valuta
Spese di spedizione: EUR 17,26
Da: U.S.A. a: Italia
Destinazione, tempi e costi

Quantità: Più di 20 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

Looney, Carl G.
Editore: Oxford University Press, 1997
ISBN 10: 0195079205 ISBN 13: 9780195079203
Antico o usato Rilegato

Da: GreatBookPricesUK, Woodford Green, Regno Unito

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: As New. Unread book in perfect condition. Codice articolo 73690

Contatta il venditore

Compra usato

EUR 343,78
Convertire valuta
Spese di spedizione: EUR 17,22
Da: Regno Unito a: Italia
Destinazione, tempi e costi

Quantità: Più di 20 disponibili

Aggiungi al carrello

Foto dell'editore

Looney
ISBN 10: 0195079205 ISBN 13: 9780195079203
Nuovo Rilegato

Da: Grand Eagle Retail, Mason, OH, U.S.A.

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Hardcover. Condizione: new. Hardcover. Pattern Recognition Using Neural Networks covers traditional linear pattern recognition and its nonlinear extension via neural networks. The approach is algorithmic for easy implementation on a computer, which makes this a refreshing what-why-and-how text that contrasts with the theoretical approach and pie-in-the-sky hyperbole of many books on neural networks. It covers the standard decision-theoretic pattern recognition of clustering via minimum distance,graphical and structural methods, and Bayesian discrimination. Pattern recognizers evolve across the sections into perceptrons, a layer of perceptrons, multiple-layered perceptrons, functionallink nets, and radial basis function networks. Other networks covered in the process are learning vector quantization networks, self-organizing maps, and recursive neural networks. Backpropagation is derived in complete detail for one and two hidden layers for both unipolar and bipolar sigmoid activation functions. The more efficient fullpropagation, quickpropagation, cascade correlation, and various methods such as strategic search, conjugate gradients, and genetic algorithms are described.Advanced methods are also described, including the full training algorithms for radial basis function networks and random vector functional link nets, as well as competitive learning networks and fuzzyclustering algorithms. Special topics covered include: feature engineering data engineering neural engineering of network architectures validation and verification of the trained networks This textbook is ideally suited for a senior undergraduate or graduate course in pattern recognition or neural networks for students in computer science, electrical engineering, and computer engineering. It is also a useful reference andresource for researchers and professionals. A text covering traditional linear pattern recognition and its nonlinear extension via neural networks. The approach is algorithmic for easy implementation on a computer. It covers the standard decision-theoretic pattern recognition of clustering via minimum distance, graphical and structural methods, and Bayesian discrimination. Shipping may be from multiple locations in the US or from the UK, depending on stock availability. Codice articolo 9780195079203

Contatta il venditore

Compra nuovo

EUR 305,35
Convertire valuta
Spese di spedizione: EUR 64,74
Da: U.S.A. a: Italia
Destinazione, tempi e costi

Quantità: 1 disponibili

Aggiungi al carrello

Foto dell'editore

Looney
ISBN 10: 0195079205 ISBN 13: 9780195079203
Nuovo Rilegato

Da: CitiRetail, Stevenage, Regno Unito

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Hardcover. Condizione: new. Hardcover. Pattern Recognition Using Neural Networks covers traditional linear pattern recognition and its nonlinear extension via neural networks. The approach is algorithmic for easy implementation on a computer, which makes this a refreshing what-why-and-how text that contrasts with the theoretical approach and pie-in-the-sky hyperbole of many books on neural networks. It covers the standard decision-theoretic pattern recognition of clustering via minimum distance,graphical and structural methods, and Bayesian discrimination. Pattern recognizers evolve across the sections into perceptrons, a layer of perceptrons, multiple-layered perceptrons, functionallink nets, and radial basis function networks. Other networks covered in the process are learning vector quantization networks, self-organizing maps, and recursive neural networks. Backpropagation is derived in complete detail for one and two hidden layers for both unipolar and bipolar sigmoid activation functions. The more efficient fullpropagation, quickpropagation, cascade correlation, and various methods such as strategic search, conjugate gradients, and genetic algorithms are described.Advanced methods are also described, including the full training algorithms for radial basis function networks and random vector functional link nets, as well as competitive learning networks and fuzzyclustering algorithms. Special topics covered include: feature engineering data engineering neural engineering of network architectures validation and verification of the trained networks This textbook is ideally suited for a senior undergraduate or graduate course in pattern recognition or neural networks for students in computer science, electrical engineering, and computer engineering. It is also a useful reference andresource for researchers and professionals. A text covering traditional linear pattern recognition and its nonlinear extension via neural networks. The approach is algorithmic for easy implementation on a computer. It covers the standard decision-theoretic pattern recognition of clustering via minimum distance, graphical and structural methods, and Bayesian discrimination. Shipping may be from our UK warehouse or from our Australian or US warehouses, depending on stock availability. Codice articolo 9780195079203

Contatta il venditore

Compra nuovo

EUR 364,17
Convertire valuta
Spese di spedizione: EUR 34,44
Da: Regno Unito a: Italia
Destinazione, tempi e costi

Quantità: 1 disponibili

Aggiungi al carrello

Vedi altre 2 copie di questo libro

Vedi tutti i risultati per questo libro