Concentration inequalities for functions of independent random variables is an area of probability theory that has witnessed a great revolution in the last few decades, and has applications in a wide variety of areas such as machine learning, statistics, discrete mathematics, and high-dimensional geometry. Roughly speaking, if a function of many independent random variables does not depend too much on any of the variables then it is concentrated in the sense that with high probability, it is close to its expected value. This book offers a host of inequalities to illustrate this rich theory in an accessible way by covering the key developments and applications in the field.
The authors describe the interplay between the probabilistic structure (independence) and a variety of tools ranging from functional inequalities to transportation arguments to information theory. Applications to the study of empirical processes, random projections, random matrix theory, and threshold phenomena are also presented.
A self-contained introduction to concentration inequalities, it includes a survey of concentration of sums of independent random variables, variance bounds, the entropy method, and the transportation method. Deep connections with isoperimetric problems are revealed whilst special attention is paid to applications to the supremum of empirical processes.
Written by leading experts in the field and containing extensive exercise sections this book will be an invaluable resource for researchers and graduate students in mathematics, theoretical computer science, and engineering.
Le informazioni nella sezione "Riassunto" possono far riferimento a edizioni diverse di questo titolo.
"The clear exposition from basic material up to recent sophisticated results and lucid writing style make the text a pleasure to read. Beginners as well as experienced scientists will prot equally from it. It will certainly become one of the standard references in the field." - Hilmar Mai, Zentralblatt Math
Stéphane Boucheron is a Professor in the Applied Mathematics and Statistics Department at Université Paris-Diderot, France. ; Gábor Lugosi is ICREA Research Professor in the Department of Economics at the Pompeu Fabra University in Barcelona, Spain. ; Pascal Massart is a Professor in the Department of Mathematics at Université de Paris-Sud, France.
Le informazioni nella sezione "Su questo libro" possono far riferimento a edizioni diverse di questo titolo.
GRATIS per la spedizione in U.S.A.
Destinazione, tempi e costiEUR 11,87 per la spedizione da Regno Unito a U.S.A.
Destinazione, tempi e costiDa: BooksRun, Philadelphia, PA, U.S.A.
Paperback. Condizione: Good. Ship within 24hrs. Satisfaction 100% guaranteed. APO/FPO addresses supported. Codice articolo 019876765X-11-1
Quantità: 1 disponibili
Da: SecondSale, Montgomery, IL, U.S.A.
Condizione: Good. Item in good condition. Textbooks may not include supplemental items i.e. CDs, access codes etc. Codice articolo 00087099617
Quantità: 1 disponibili
Da: Revaluation Books, Exeter, Regno Unito
Paperback. Condizione: Brand New. reprint edition. 496 pages. 8.43x5.85x0.73 inches. In Stock. Codice articolo __019876765X
Quantità: 2 disponibili
Da: Revaluation Books, Exeter, Regno Unito
Paperback. Condizione: Brand New. reprint edition. 496 pages. 8.43x5.85x0.73 inches. In Stock. Codice articolo zk019876765X
Quantità: 1 disponibili
Da: moluna, Greven, Germania
Condizione: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. An accessible account of the rich theory surrounding concentration inequalities in probability theory, with applications from machine learning and statistics to high-dimensional geometry. This book introduces key ideas and presents a detailed summary of the. Codice articolo 594413957
Quantità: Più di 20 disponibili