Empirical Methods for Artificial Intelligence (MIT Press)

Valutazione media 4,5
( su 6 valutazioni fornite da Goodreads )
 
9780262032254: Empirical Methods for Artificial Intelligence (MIT Press)

Computer science and artificial intelligence in particular have no curriculum in research methods, as other sciences do. This book presents empirical methods for studying complex computer programs: exploratory tools to help find patterns in data, experiment designs and hypothesis-testing tools to help data speak convincingly, and modeling tools to help explain data. Although many of these techniques are statistical, the book discusses statistics in the context of the broader empirical enterprise. The first three chapters introduce empirical questions, exploratory data analysis, and experiment design. The blunt interrogation of statistical hypothesis testing is postponed until chapters 4 and 5, which present classical parametric methods and computer-intensive (Monte Carlo) resampling methods, respectively. This is one of few books to present these new, flexible resampling techniques in an accurate, accessible manner.

Much of the book is devoted to research strategies and tactics, introducing new methods in the context of case studies. Chapter 6 covers performance assessment, chapter 7 shows how to identify interactions and dependencies among several factors that explain performance, and chapter 8 discusses predictive models of programs, including causal models. The final chapter asks what counts as a theory in AI, and how empirical methods -- which deal with specific systems -- can foster general theories. Mathematical details are confined to appendixes and no prior knowledge of statistics or probability theory is assumed. All of the examples can be analyzed by hand or with commercially available statistics packages.

The Common Lisp Analytical Statistics Package (CLASP), developed in the author's laboratory for Unix and Macintosh computers, is available from The MIT Press.

A Bradford Book

Le informazioni nella sezione "Riassunto" possono far riferimento a edizioni diverse di questo titolo.

About the Author:

Paul Cohen is Professor in the Department of Computer Science at the University of Massachusetts at Amherst.

Le informazioni nella sezione "Su questo libro" possono far riferimento a edizioni diverse di questo titolo.

I migliori risultati di ricerca su AbeBooks

1.

Cohen, Paul R. (Beal and Cohen)
Editore: MIT Press (1995)
ISBN 10: 0262032252 ISBN 13: 9780262032254
Nuovi Quantità: 2
Da
Books2Anywhere
(Fairford, GLOS, Regno Unito)
Valutazione libreria
[?]

Descrizione libro MIT Press, 1995. HRD. Condizione libro: New. New Book. Shipped from UK in 4 to 14 days. Established seller since 2000. Codice libro della libreria WM-9780262032254

Maggiori informazioni su questa libreria | Fare una domanda alla libreria

Compra nuovo
EUR 61,34
Convertire valuta

Aggiungere al carrello

Spese di spedizione: EUR 10,07
Da: Regno Unito a: U.S.A.
Destinazione, tempi e costi

2.

Paul R. Cohen
Editore: MIT Press Ltd
ISBN 10: 0262032252 ISBN 13: 9780262032254
Nuovi Rilegato Quantità: 2
Da
THE SAINT BOOKSTORE
(Southport, Regno Unito)
Valutazione libreria
[?]

Descrizione libro MIT Press Ltd. Hardback. Condizione libro: new. BRAND NEW, Empirical Methods for Artificial Intelligence, Paul R. Cohen, Computer science and artificial intelligence in particular have no curriculum in research methods, as other sciences do. This book presents empirical methods for studying complex computer programs: exploratory tools to help find patterns in data, experiment designs and hypothesis-testing tools to help data speak convincingly, and modeling tools to help explain data. Although many of these techniques are statistical, the book discusses statistics in the context of the broader empirical enterprise. The first three chapters introduce empirical questions, exploratory data analysis, and experiment design. The blunt interrogation of statistical hypothesis testing is postponed until chapters 4 and 5, which present classical parametric methods and computer-intensive (Monte Carlo) resampling methods, respectively. This is one of few books to present these new, flexible resampling techniques in an accurate, accessible manner. Much of the book is devoted to research strategies and tactics, introducing new methods in the context of case studies. Chapter 6 covers performance assessment, chapter 7 shows how to identify interactions and dependencies among several factors that explain performance, and chapter 8 discusses predictive models of programs, including causal models. The final chapter asks what counts as a theory in AI, and how empirical methods -- which deal with specific systems -- can foster general theories. Mathematical details are confined to appendixes and no prior knowledge of statistics or probability theory is assumed. All of the examples can be analyzed by hand or with commercially available statistics packages. The Common Lisp Analytical Statistics Package (CLASP), developed in the author's laboratory for Unix and Macintosh computers, is available from The MIT Press. A Bradford Book. Codice libro della libreria B9780262032254

Maggiori informazioni su questa libreria | Fare una domanda alla libreria

Compra nuovo
EUR 82,03
Convertire valuta

Aggiungere al carrello

Spese di spedizione: EUR 7,77
Da: Regno Unito a: U.S.A.
Destinazione, tempi e costi

3.

Paul R. Cohen
Editore: A Bradford Book (1995)
ISBN 10: 0262032252 ISBN 13: 9780262032254
Nuovi Rilegato Quantità: 1
Da
Ergodebooks
(RICHMOND, TX, U.S.A.)
Valutazione libreria
[?]

Descrizione libro A Bradford Book, 1995. Hardcover. Condizione libro: New. Codice libro della libreria DADAX0262032252

Maggiori informazioni su questa libreria | Fare una domanda alla libreria

Compra nuovo
EUR 94,66
Convertire valuta

Aggiungere al carrello

Spese di spedizione: EUR 3,43
In U.S.A.
Destinazione, tempi e costi

4.

Paul R. Cohen
Editore: MIT Press Ltd, United States (1995)
ISBN 10: 0262032252 ISBN 13: 9780262032254
Nuovi Rilegato Quantità: 1
Da
The Book Depository US
(London, Regno Unito)
Valutazione libreria
[?]

Descrizione libro MIT Press Ltd, United States, 1995. Hardback. Condizione libro: New. Language: English . Brand New Book. Computer science and artificial intelligence in particular have no curriculum in research methods, as other sciences do. This book presents empirical methods for studying complex computer programs: exploratory tools to help find patterns in data, experiment designs and hypothesis-testing tools to help data speak convincingly, and modeling tools to help explain data. Although many of these techniques are statistical, the book discusses statistics in the context of the broader empirical enterprise. The first three chapters introduce empirical questions, exploratory data analysis, and experiment design. The blunt interrogation of statistical hypothesis testing is postponed until chapters 4 and 5, which present classical parametric methods and computer-intensive (Monte Carlo) resampling methods, respectively. This is one of few books to present these new, flexible resampling techniques in an accurate, accessible manner.Much of the book is devoted to research strategies and tactics, introducing new methods in the context of case studies. Chapter 6 covers performance assessment, chapter 7 shows how to identify interactions and dependencies among several factors that explain performance, and chapter 8 discusses predictive models of programs, including causal models. The final chapter asks what counts as a theory in AI, and how empirical methods -- which deal with specific systems -- can foster general theories. Mathematical details are confined to appendixes and no prior knowledge of statistics or probability theory is assumed. All of the examples can be analyzed by hand or with commercially available statistics packages.The Common Lisp Analytical Statistics Package (CLASP), developed in the author s laboratory for Unix and Macintosh computers, is available from The MIT Press.A Bradford Book. Codice libro della libreria AAH9780262032254

Maggiori informazioni su questa libreria | Fare una domanda alla libreria

Compra nuovo
EUR 98,18
Convertire valuta

Aggiungere al carrello

Spese di spedizione: GRATIS
Da: Regno Unito a: U.S.A.
Destinazione, tempi e costi

5.

Cohen, Paul R.
Editore: A Bradford Book (1995)
ISBN 10: 0262032252 ISBN 13: 9780262032254
Nuovi Rilegato Quantità: 2
Da
Murray Media
(North Miami Beach, FL, U.S.A.)
Valutazione libreria
[?]

Descrizione libro A Bradford Book, 1995. Hardcover. Condizione libro: New. Codice libro della libreria P110262032252

Maggiori informazioni su questa libreria | Fare una domanda alla libreria

Compra nuovo
EUR 96,62
Convertire valuta

Aggiungere al carrello

Spese di spedizione: EUR 2,57
In U.S.A.
Destinazione, tempi e costi

6.

Paul R. Cohen
Editore: MIT Press Ltd, United States (1995)
ISBN 10: 0262032252 ISBN 13: 9780262032254
Nuovi Rilegato Quantità: 1
Da
The Book Depository
(London, Regno Unito)
Valutazione libreria
[?]

Descrizione libro MIT Press Ltd, United States, 1995. Hardback. Condizione libro: New. Language: English . Brand New Book. Computer science and artificial intelligence in particular have no curriculum in research methods, as other sciences do. This book presents empirical methods for studying complex computer programs: exploratory tools to help find patterns in data, experiment designs and hypothesis-testing tools to help data speak convincingly, and modeling tools to help explain data. Although many of these techniques are statistical, the book discusses statistics in the context of the broader empirical enterprise. The first three chapters introduce empirical questions, exploratory data analysis, and experiment design. The blunt interrogation of statistical hypothesis testing is postponed until chapters 4 and 5, which present classical parametric methods and computer-intensive (Monte Carlo) resampling methods, respectively. This is one of few books to present these new, flexible resampling techniques in an accurate, accessible manner.Much of the book is devoted to research strategies and tactics, introducing new methods in the context of case studies. Chapter 6 covers performance assessment, chapter 7 shows how to identify interactions and dependencies among several factors that explain performance, and chapter 8 discusses predictive models of programs, including causal models. The final chapter asks what counts as a theory in AI, and how empirical methods -- which deal with specific systems -- can foster general theories. Mathematical details are confined to appendixes and no prior knowledge of statistics or probability theory is assumed. All of the examples can be analyzed by hand or with commercially available statistics packages.The Common Lisp Analytical Statistics Package (CLASP), developed in the author s laboratory for Unix and Macintosh computers, is available from The MIT Press.A Bradford Book. Codice libro della libreria AAH9780262032254

Maggiori informazioni su questa libreria | Fare una domanda alla libreria

Compra nuovo
EUR 108,33
Convertire valuta

Aggiungere al carrello

Spese di spedizione: GRATIS
Da: Regno Unito a: U.S.A.
Destinazione, tempi e costi

7.

Cohen, Paul R.
Editore: Bradford Books (1995)
ISBN 10: 0262032252 ISBN 13: 9780262032254
Nuovi Rilegato Quantità: 2
Da
Revaluation Books
(Exeter, Regno Unito)
Valutazione libreria
[?]

Descrizione libro Bradford Books, 1995. Hardcover. Condizione libro: Brand New. first edition edition. 421 pages. 9.50x8.75x1.25 inches. In Stock. Codice libro della libreria __0262032252

Maggiori informazioni su questa libreria | Fare una domanda alla libreria

Compra nuovo
EUR 115,01
Convertire valuta

Aggiungere al carrello

Spese di spedizione: EUR 6,72
Da: Regno Unito a: U.S.A.
Destinazione, tempi e costi